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Abstract
We present a complete derivation of the semiclassical limit of the coherent-state
propagator in one dimension, starting from path integrals in phase space. We
show that the arbitrariness in the path integral representation, which follows
from the overcompleteness of the coherent states, results in many different
semiclassical limits. We explicitly derive two possible semiclassical formulae
for the propagator, we suggest a third one, and we discuss their relationships.
We also derive an initial-value representation for the semiclassical propagator,
based on an initial Gaussian wavepacket. It turns out to be related to, but
different from, Heller’s thawed Gaussian approximation. It is very different
from the Herman–Kluk formula, which is not a correct semiclassical limit.
We point out errors in two derivations of the latter. Finally we show how the
semiclassical coherent-state propagators lead to WKB-type quantization rules
and to approximations for the Husimi distributions of stationary states.

PACS numbers: 03.65.Sq, 03.65.Ta, 03.65.Vf
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1. Introduction

Semiclassical approximations in phase space using coherent states have been discussed
extensively for several decades. This attractive topic, a favourite of many theoretical physicists
and chemists, turns out to be very difficult. In this contribution to its literature, we shall attempt
to sort out and clarify the web of contradictions and inconsistencies that have characterized
the recent state of the field. We shall do so for the simplest possible case, one-dimensional
coordinate space, i.e. two-dimensional phase space. This is the case where it is relatively easy
to check the semiclassical approximations. We have done work in higher dimensions as well,
but we do not include it here, as it would only obscure the basic relationships and further
lengthen the paper. The conclusions we have reached are stated in section 7, and the reader
who is already familiar with the subject may jump to them now to get an overall view. Because
the pitfalls are numerous, however, we shall follow a slower approach, a historical one in this
introduction, and then a systematic and detailed one in the body of the paper.

The study of semiclassical methods has two basic motivations. First, it provides
approximations to quantum mechanical quantities in terms of classical ingredients. These
approximations should be very good if the typical classical actions are much larger than
Planck’s constant. Interestingly, they are often fairly good even at very low quantum numbers.
Second, semiclassical methods also help in understanding the quantum mechanical processes
themselves, providing a more intuitive description. This description includes quantum
mechanical interference, since both amplitudes and phases can be calculated semiclassically.

The semiclassical approximation for the evolution operator, or propagator, in the
coordinate representation has been known for more than 70 years and was first written by Van
Vleck [Van28]. It is a complex number with a modulus and a phase. The main part of the phase
is the action of a classical trajectory joining a given initial coordinate to a given final coordinate
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in a given time. Finding such trajectories is usually not a simple task. It is known as ‘the root
search problem’ and it gets more and more complicated as the number of dimensions increases.
The modulus of the semiclassical propagator is related to the second derivative of the action
with respect to these initial and final points. It measures the dispersal of nearby trajectories.
Gutzwiller, among others, revisited this problem around 1970 [Gut71, Gut90], focusing on
non-integrable systems and giving birth to the field of quantum chaos. Much progress has
been made since then, particularly on the topological properties of Maslov indices [Rob91]
and on the scars of periodic trajectories [Hel84, Bog88].

But there is another interesting representation for the evolution operator, which seems
at first sight to be more appropriate for comparisons with classical mechanics. This is the
representation using the coherent states of a harmonic oscillator. They are Gaussian states,
localized in both coordinates and momenta, and therefore they can be thought of as quantum
points in phase space. Although the exact coordinate propagator and the exact coherent-state
propagator are related by a simple change of representation, the semiclassical approximations
to them are quite different. One of the differences is that the classical Hamiltonians with
which the trajectories are calculated are different. Another is that the classical trajectories for
the coherent-state propagator are usually complex. Both semiclassical propagators involve
trajectories with mixed initial and final conditions, hence both have the root search problem.

This semiclassical coherent-state propagator first appeared in the work of Klauder [Kla78,
Kla79,Kla87a] without a detailed derivation. Weissman [Wei82] extended the old semiclassical
correspondence relations to the case of coherent state variables and presented a first derivation
of the semiclassical propagator; his derivation was based on the general semiclassical
machinery rather than on path integral techniques. The possibility of a rigorous derivation
using the latter is mentioned in several papers, but it does not seem to have actually been
published, to our knowledge. The properties of the propagator were studied, however, for a
number of fundamental quantum processes (see, e.g., [Xav96a, Xav96b, Xav97, Gro98a]). A
recent application to the semiclassical quantization of a system with classically mixed regular
and chaotic dynamics [Sch98] demonstrated the power of this approach.

There is another important difference between the coordinate and coherent state
representations. Due to the overcompleteness of the latter, the path integral for the coherent-
state propagator is not at all unique, and this non-unicity reflects itself in a large multiplicity
of possible semiclassical propagators. For the quantum mechanical path integral, some good
discussion of this variety was given in a review by Klauder and Skagerstam (KS) [Kla85].
Yet more ambiguity arises because coordinates and momenta do not commute in quantum
mechanics, and therefore there is no unique general way of associating a quantal Hamiltonian
with a classical one. The net result of all this is that many arbitrary decisions need to be made
whenever one contemplates making a semiclassical approximation.

Without doubt, semiclassical approximations based on the propagator have been highly
successful in chemical, molecular, atomic and nuclear physics. In spite of this, however,
problems are turning up more and more often for which these methods are made very hard or
inapplicable by the root search difficulty. These are usually problems in which the underlying
classical dynamics is chaotic, which means that the number of contributing (real or complex)
‘root trajectories’ can be extremely large. Consequently, people have attempted more and
more to avoid mixed initial and final conditions. The ideal method is one in which one is
given a coordinate and a momentum both at the initial time. Then the classical trajectory
is unique, and the wavefunction evolves with time by following this unique thread. Such a
method is called an ‘initial-value representation’ or IVR. Much work has been done on IVRs by
many people, including Miller et al [Mil70,Sun97], Levit and Smilansky [Lev77] and Brumer
et al [Cam92, Pro95]. These IVRs do not involve coherent states. Klauder [Kla87b] also
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struggled with this problem with coherent states. Kay [Kay94a, Kay94b, Kay97] compared
several IVRs numerically. A very popular IVR, based on coherent states, is the Herman–Kluk
or HK propagator [Her84, Her86, Klu86, Gro97, Gue98, Gro98b]. For recent reviews see the
papers by Sepúlveda and Grossmann [Sep96, Gro99].

Finally we should note that the coherent state representation is not the only way to do
quantum mechanics in phase space. A fascinating alternative is provided by the Wigner–Weyl
representation [Wig32, Hil84, Ber89]. We shall not pursue this approach in this paper and we
refer to a recent review article by Ozorio de Almeida [Ozo98].

Contents of this paper. In section 2 we give a very complete derivation of the semiclassical
propagator in the coherent state representation. The result is equation (2.63) or (2.72). We have
actually two different calculations of the path integral, a step-by-step calculation in section 2
and a more general method in the appendix. The latter is used again (in section 3) to perform a
different integral. Section 3 discusses the variety of possible path integrals using coherent states
and compares them. Section 4 contains the derivation of our IVR, which is equation (4.29).
Our original purpose was to give a solid derivation of the HK formula but, when we were
finished, we found a result very different from theirs, and in much better agreement with the
expected behaviour of such a formula. Also in section 4, we compare our IVR with Heller’s
IVR. Both have equal claims to being a correct semiclassical IVR, but they are different.
Section 5 returns to the HK propagator and points out the errors made in two papers where it
was derived. It also explains why, in spite of being an incorrect semiclassical formula, HK still
works (sometimes poorly) in some situations. In section 6 we Fourier transform the propagator
from time to energy, which yields the Green function in the coherent state representation. By
looking for the poles of this Green function, we obtain the quantization rule for the energy
levels. By looking at the residues of the poles, we obtain approximate Husimi distributions for
the stationary states. Finally section 7 contains a summary of our results and our conclusions.

2. The semiclassical coherent-state propagator

In classical mechanics, it is convenient to describe the time evolution by focusing on a trajectory
in phase space. One candidate for a similar quantity in quantum mechanics is the operator
which describes the time evolution in the coherent state representation, the coherent-state
propagator. In this section we shall construct the semiclassical limit of this propagator. The
result is equation (2.63). For convenience, we shall confine ourselves here to a single degree
of freedom. The extension to higher-dimensional systems will be discussed in the future.

2.1. The path integral

The coherent states |z〉 of a harmonic oscillator of mass m and frequency ω are defined by

|z〉 = e− 1
2 |z|2 ezâ

† |0〉 (2.1)

with |0〉 the harmonic oscillator ground state and

â† = 1√
2

(
q̂

b
− i

p̂

c

)
z = 1√

2

(q
b

+ i
p

c

)
. (2.2)

In the above q̂, p̂ and â† are operators; q and p are real numbers; z is complex. The parameters

b = (h̄/mω)
1
2 and c = (h̄mω)

1
2 (2.3)
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define the length and momentum scales, respectively, and their product is h̄. We shall need the
wavefunction of a coherent state in the position representation, which is

〈x|z〉 = π− 1
4 b− 1

2 exp

(
− (x − q)2

2b2

)
exp

(
i

h̄
p(x − q/2)

)

= π− 1
4 b− 1

2 exp

[
−1

2
(x/b −

√
2z)2 +

z

2
(z− z∗)

]
. (2.4)

Now we consider a system with Hamiltonian operator Ĥ (t). We restrict ourselves to
‘reasonable’ Hamiltonians, i.e. we assume that Ĥ (t), written as a function of the creation
and annihilator operators â† and â, can be expanded into a power series of â†, â. The matrix
elements of the evolution operator from time 0 to time t in the basis of the coherent states (2.1)
are

K(z′′, t; z′, 0) = 〈z′′|T̂ e− i
h̄

∫ t
0 Ĥ (t

′) dt ′ |z′〉 (2.5)

where T̂ is the time-ordering operator. For time-independent Ĥ this is simply

K(z′′, t; z′, 0) = 〈z′′|e− i
h̄
Ĥ t |z′〉. (2.6)

In order to write the propagator as a path integral, we divide the time interval (0, t) into
N small intervals of length τ := t/N , and we write

K(z′′, t; z′, 0) = 〈zN |
N−1∏
j=0

T̂ exp

{
− i

h̄

∫ (j+1)τ

jτ

Ĥ (t ′) dt ′
}
|z0〉 (2.7)

where, for simplicity of notation, we identify |zN 〉 ≡ |z′′〉 and |z0〉 ≡ |z′〉. If the time step
τ is small enough, the variable Ĥ (t ′) in the integral can be replaced by the constant Ĥ (tj ),
with some intermediate time tj ∈ [jτ, (j + 1)τ ]. Then the time-ordering operator becomes
unnecessary and we get, with large N ,

K(z′′, t; z′, 0) ≈ 〈zN |
N−1∏
j=0

e− i
h̄
Ĥ (tj )τ |z0〉. (2.8)

Now we insert the unit operator, namely

11 =
∫

|z〉d2z

π
〈z| ≡

∫ ∫
|z〉dx dy

π
〈z| ≡

∫ ∫
|z〉dz� dz

2π i
〈z| (2.9)

everywhere between adjacent propagation steps. We denoted the real and imaginary parts
of z by x and y, respectively. The sign of the last equation member on the right is actually
undetermined, because the sign of the Jacobian depends on the order in which the variables
are taken. To avoid any possible confusion, we state here that, in all integrations, dz� dz/2π i
actually means dx dy/π . After the insertions, the propagator becomes a 2(N−1)-fold integral
over the whole phase space

K(z′′, t; z′, 0) =
∫ { N−1∏

j=1

d2zj

π

} N−1∏
j=0

{〈zj+1|e− i
h̄
Ĥ (tj )τ |zj 〉

}

=
∫ { N−1∏

j=1

dz�j dzj

2π i

}
ef (z

�,z) (2.10)

where f is defined by

f (z�, z) := ln

[ N−1∏
j=0

{〈zj+1|e− i
h̄
Ĥ (tj )τ |zj 〉

}]
(2.11)
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with z := (z0, z1, . . . , zN) and its complex conjugate z� := (z�0, z
�
1, . . . , z

�
N). The reason for

writing z� separately from z as arguments of f is that they must be considered independent
variables, because we are integrating over the two variables xj and yj for each j . Eventually,
when we carry out the stationary-exponent approximation, each of these two real variables will
be allowed to become complex, which will result in four real variables for each j . Following
Klauder [Kla78], we transform the integrand ef (z

�,z) as follows:

ef (z
�,z) ≈

N−1∏
j=0

〈
zj+1

∣∣1 − iτ

h̄
Ĥ (tj )

∣∣zj 〉

=
N−1∏
j=0

〈zj+1|zj 〉
(

1 − iτ

h̄

〈zj+1|Ĥ (tj )|zj 〉
〈zj+1|zj 〉

)

≈
[ N−1∏
j=0

〈zj+1|zj 〉
]

exp

{ N−1∑
j=0

− iτ

h̄
Hj+1,j

}
(2.12)

with the abbreviation

Hj+1,j ≡ H(z�j+1, zj ; tj ) := 〈zj+1|Ĥ (tj )|zj 〉
〈zj+1|zj 〉 . (2.13)

Using the coherent-state overlap formula

〈zj+1|zj 〉 = exp
{− 1

2 |zj+1|2 + z�j+1zj − 1
2 |zj |2

}
(2.14)

we write ef (z
�,z) as

ef (z
�,z) = exp

[
N−1∑
j=0

{
−1

2
|zj+1|2 + z�j+1zj − 1

2
|zj |2 − iτ

h̄
Hj+1,j

}]

= exp

[
N−1∑
j=0

{
1

2
(z�j+1 − z�j )zj − 1

2
z�j+1(zj+1 − zj )− iτ

h̄
Hj+1,j

}]
.

(2.15)

Later the limit N → ∞ (respectively τ → 0) will be taken. Then the above summations
will turn into integrals, and expressions (2.8)–(2.12) would appear to be exact, were it not for the
well known problems attached to the meaning of such functional integrals. We see, however,
that the treatment of time-dependent systems is (almost) identical to that of time-independent
ones.

2.2. The stationary-exponent approximation

In the semiclassical limit of small h̄ we can approximate the integral (2.10), with
equation (2.15), by looking for the places where the exponent f is stationary and replacing
it in their vicinity by a quadratic form of its variables (z�, z). We call this the stationary-
exponent approximation or the Gaussian approximation. In the literature it is often referred to
as the stationary-phase approximation (SPA) or the steepest-descent approximation. Strictly
speaking, neither of these two names is quite correct. Our exponent f is complex, therefore
it is not a phase, and ‘steepest descent’ refers to a geometrical interpretation for the case of a
single complex variable.

Our approximation method involves going into the complex plane for the variables xj and
yj , which are intrinsically real. Therefore it is important to keep clearly in mind why we go
through so many developments where we treat them as complex. The integrals we are after are
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over the real variables xj , yj . Anything else we may do to calculate them is just mathematical
tricks. The trick of going into the complex plane works only with analytic functions. Hence,
when we have to do an integral over real xj and yj , we shall first make sure that the function is
analytic, and then we shall see what happens to this analytic function when we let the variables
be complex. These words of caution may seem superfluous at this time, but they will turn out
to be crucial later, when the need for further simplification arises. As we shall see in section 3,
confusion about this point seems to be what led Grossmann and Xavier [Gro98b] into error.
As a start, one should test this analyticity requirement for the present integral (2.10). We have
already assumed in section 2.1 that the operator Ĥ could be approximated by a polynomial in
the operators â† and â. When we take its matrix element between the bra 〈zj+1| and the ket
|zj 〉, we have to do an integral of the type

〈zj+1|Ĥ (tj )|zj 〉 =
∫

dx 〈zj+1|x〉
(
Polynomial in x and d

dx

) 〈x|zj 〉 (2.16)

where the two wavefunctions are given by (2.4) and its complex conjugate. The integral
produces an analytic function of z�j+1 and zj , with the additional factor

exp
[− 1

2 (z
�
j+1zj+1 + z�j zj )

]
(2.17)

which is the only place where the other two variables, zj+1 and z�j , occur. According to (2.13),
this must then be divided by 〈zj+1|zj 〉, which is given in (2.14), and which contains the same
factor (2.17), times another, never vanishing, analytic function of z�j+1 and zj . When the
quotient is taken, the factor (2.17) cancels out. Hence the ‘effective Hamiltonian function’
Hj+1,j or H(z�j+1, zj ; tj ) of equation (2.13) is an analytic function of the variables z�j+1 and zj
separately, and it does not contain the other two variables zj+1 and z�j at all !

Thus, the basic idea is to approximate the argument of the exponential in equation (2.15)
by a second-order Taylor expansion in the vicinity of the stationary trajectory. The resulting
quadratic form in the exponent leads to a Gaussian integral which can be done exactly.
There may be more than one classical trajectory between the end points, each with its own
contribution, which leads to a sum. For clarity during the derivation, this sum will not be
written explicitly. We find the stationary points by requiring the vanishing of the derivatives
of f with respect to z and z� separately, as mentioned earlier

∂f

∂zj
= z�j+1 − z�j − iτ

h̄

∂Hj+1,j

∂zj
= 0 j = 1, . . . , N − 1

∂f

∂z�j+1

= −zj+1 + zj − iτ

h̄

∂Hj+1,j

∂z�j+1

= 0 j = 0, . . . , N − 2.
(2.18)

We introduce new integration variables η and η� which describe the deviations from the points
of stationary exponent: z → z + η, z� → z� + η�, with the boundary conditions

η0 = η�0 = ηN = η�N = 0. (2.19)

Now the exponent in equation (2.15)

f (z� + η�, z + η) =
N−1∑
j=0

{
1
2 (z

�
j+1 + η�j+1 − z�j − η�j )(zj + ηj )− 1

2 (z
�
j+1 + η�j+1)

×(zj+1 + ηj+1 − zj − ηj )− iτ

h̄
Hj+1,j (z

�
j+1 + η�j+1, zj + ηj )

}
(2.20)

will be expanded into a Taylor series in (η�, η) around the stationary points (z�, z) up to second
order:

f (z� + η�, z + η) ≈
N−1∑
j=0

{
1
2 (z

�
j+1 − z�j )zj − 1

2z
�
j+1(zj+1 − zj )
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− iτ

h̄
Hj+1,j (z

�
j+1, zj ) +

1

2
(z�j+1 − z�j )ηj

+ 1
2 (η

�
j+1 − η�j )zj − 1

2z
�
j+1(ηj+1 − ηj )

−1

2
η�j+1(zj+1 − zj )− iτ

h̄

∂Hj+1,j

∂zj
ηj − iτ

h̄

∂Hj+1,j

∂z�j+1

η�j+1

+ 1
2 (η

�
j+1 − η�j )ηj − 1

2η
�
j+1(ηj+1 − ηj )

− iτ

2h̄

[
∂2Hj+1,j

∂z2
j

η2
j + 2

∂2Hj+1,j

∂z�j+1∂zj
η�j+1 ηj +

∂2Hj+1,j

∂z�2j+1

η�2j+1

]}
(2.21)

= f (z�, z) +
N−1∑
j=0

{(
z�j+1 − 1

2
z�j − iτ

h̄

∂Hj+1,j

∂zj

)
ηj − 1

2
z�j+1ηj+1

+

(
zj − 1

2
zj+1 − iτ

h̄

∂Hj+1,j

∂z�j+1

)
η�j+1 − 1

2
zjη

�
j

− 1
2η

�
j+1ηj+1 + η�j+1ηj − 1

2η
�
jηj

− iτ

2h̄

[
∂2Hj+1,j

∂z2
j

η2
j + 2

∂2Hj+1,j

∂z�j+1∂zj
η�j+1 ηj +

∂2Hj+1,j

∂z�2j+1

η�2j+1

]}
. (2.22)

The terms of first order (second and third line of equation (2.22)) vanish, when the boundary
conditions (2.19) are taken into account, because of the stationary exponent conditions (2.18).
Inserting equation (2.22) into (2.10) yields, in view of equation (2.19),

K(z′′, t; z′, 0) = ef (z
�,z)

∫ { N−1∏
j=1

dη�j dηj

2π i

}
exp

[ N−1∑
j=0

{
− iτ

2h̄

∂2Hj+1,j

∂z2
j

η2
j

− iτ

2h̄

∂2Hj+1,j

∂z�2j+1

η�2j+1 − η�jηj +

(
1 − iτ

h̄

∂2Hj+1,j

∂z�j+1∂zj

)
η�j+1ηj

}]
. (2.23)

2.3. Performing the integrals

At this point we start to carry out the integrations over the variables ηj , η�j . We have two ways
of doing this. In the body of the paper, we perform successively

∫∫
dη�1 dη1,

∫∫
dη�2 dη2, . . . ,

deriving eventually a recursion relation, which becomes a nonlinear differential equation when
we go to the limit of continuous variables. In the appendix, we do it by writing the multiple
integral in terms of the determinant of the quadratic form; we calculate this determinant with
a pair of recursion relations, which turn into linear differential equations in the limit. The
two methods are quite different, but they give the same result. The reader who wants to save
time does not have to study both. In the appendix, then, we go on to use the same method to
calculate a different path integral, which arises in section 3.

Here, we calculate the integrals
∫∫

dη�j dηj by applying the general formula∫ ∞

−∞

∫ ∞

−∞

dx dy

π
eA1x

2+A2y
2+A3xy+B1x+B2y

= 1√
A1A2 − A2

3/4
exp

(−B2
1A2 − B2

2A1 + B1B2A3

4A1A2 − A2
3

)
(2.24)

which is correct if the integrations are done along the two real axes, as they would be if x and
y were the real and imaginary parts of η, respectively. Two comments need to be made here.
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First, the integral must converge. If we call −µ1 and −µ2 the eigenvalues of the symmetric
matrix of the quadratic form in the exponent on the left-hand side, convergence requires that
µ1 and µ2 both have a non-negative real part. Second, the phase of the square root needs to be
defined, since A1, A2, A3 are complex numbers. This square root is also equal to the product√
µ1

√
µ2, and the phase φi of each

√
µi must be chosen to satisfy −π/4 � φi � π/4. This

phase rule is extremely important in determining the phase of the semiclassical propagator
when one works in configuration space. For the present case of the semiclassical coherent-
state propagator, it is less crucial because the phase can usually be determined by appealing to
continuity in time.

We must now rewrite this formula in terms of the variablesη andη� rather than x and y. The
transformation of variables is simple enough, but the paths of integration are totally changed,
and the associated conditions need to be restated. To simplify notations a little, we call the
variables u and v instead of η and η�, respectively. Then the new formula is

∫ ∫
du dv

2π i
ea1u

2+a2v
2+a3uv+b1u+b2v = 1√

a2
3 − 4a1a2

exp

(
b2

1a2 + b2
2a1 − b1b2a3

a2
3 − 4a1a2

)
. (2.25)

The integral is convergent if and only if the two numbers

µ1,2 = −a3 ± 2
√
a1a2

which are the negatives of the eigenvalues of the symmetric matrix in the exponent on the
left-hand side of equation (2.24), not (2.25), both have a non-negative real part. The square
root in equation (2.25) is again the product

√
µ1

√
µ2 and, once again, the phase φi of each√

µi must be chosen to satisfy −π/4 � φi � π/4.
For the η�1, η1 integration, the parameters are

a1 = − iτ

2h̄

∂2H2,1

∂z2
1

a2 = − iτ

2h̄

∂2H1,0

∂z�21

:= X1 a3 = −1 (2.26)

b1 =
(

1 − iτ

h̄

∂2H2,1

∂z�2∂z1

)
η�2 and b2 = 0. (2.27)

Convergence is assured since −a3 is real, positive and much larger thana1 anda2 (τ is arbitrarily
small). The correct branch of the square root is the one whose phase is close to 0. The result
is

K(zN, t; z0, 0) = ef (z
�,z)√

1 + 2i τ
h̄

∂2H2,1

∂z2
1
X1

∫ [ N−1∏
j=2

dη�i dηi
2π i

]
exp



(
1 − iτ

h̄

∂2H2,1

∂z�2∂z1

)2
X1 η

�2
2

1 + 2 iτ
h̄

∂2H2,1

∂z2
1
X1




× exp

{
N−1∑
j=2

− iτ

2h̄

∂2Hj+1,j

∂z2
j

η2
j − iτ

2h̄

∂2Hj,j−1

∂z�2j
η�2j − η�jηj

+

(
1 − iτ

h̄

∂2Hj+1,j

∂z�j+1∂zj

)
η�j+1ηj

}
. (2.28)

The second set of integrals,
∫∫

dη�2 dη2, is done again with equation (2.25), but now a2 becomes
more complicated and is expressed as a function of X1. This kind of behaviour continues at
each stage of the integrations. If we callXj the value of a2 when we do the integrals

∫∫
dη�j dηj
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according to equation (2.25), we find the following parameters:

a1 = − iτ

2h̄

∂2Hj+1,j

∂z2
j

a3 = −1

b1 =
(

1 − iτ

h̄

∂2Hj+1,j

∂z�j+1∂zj

)
η�j+1 b2 = 0

(2.29)

while the formula for a2 becomes a recursion relation for Xj

X0 = 0 (initial condition)

Xj = − iτ

2h̄

∂2Hj,j−1

∂z�2j
+

(
1 − iτ

h̄

∂2Hj,j−1

∂z�j ∂zj−1

)2
1 + 2 iτ

h̄

∂2Hj,j−1

∂z2
j−1

Xj−1

Xj−1 j = 1, . . . , N − 1.
(2.30)

Once all integrations are done, the result is

K(zN, t; z0, 0) = ef (z
�,z)

N−1∏
j=1

1√
1 + 2i τ

h̄

∂2Hj+1,j

∂z2
j

Xj

(2.31)

withXj satisfying equation (2.30). Once again, the phase of each square root should be chosen
close to 0.

2.4. Continuous variables

The time has come to perform the limit N → ∞ (respectively τ → 0). This gets rid
of the approximations associated with the time discretization in equation (2.15), and the
discrete recursion formula (2.30) becomes a solvable differential equation. The stationary
phase conditions (2.18) are in this limit identical to Hamilton’s equations

ż� = i

h̄

∂H
∂z

ż = − i

h̄

∂H
∂z�

(2.32)

where H(z�, z, t) is the limit of Hj+1,j , equation (2.13), and is simply given by

H(z�, z, t) = 〈z|Ĥ (t)|z〉. (2.33)

The question of boundary conditions presents us with a grave problem at this point. We
have been approximating the propagator going in time t from coherent state (q ′, p′) to coherent
state (q ′′, p′′), and our approximation seems to involve the classical path between the two points
in phase space. But there is no such classical path, real or complex, between these two points,
generically speaking! The unique classical trajectory which goes through (q ′, p′) at time 0
does not in general go through (q ′′, p′′) at time t . We have too many boundary conditions!

One way out of this quandary was shown by [Wei83]. Actually, zN and z�0 do not enter the
equations of motion at all. Neither one occurs in equations (2.15) or (2.18). Thus, the problem
is really to find a classical path going from z0 to z�N in time t , and such a path does exist, but
it is usually complex, in spite of the fact that (q0, p0) and (qN, pN) are real. The path will be
real only if (q0, p0) and (qN, pN) happen to be on the same classical trajectory. Given that the
intermediate values of q and p will now be both complex usually, it makes no sense to retain
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the notations z and z�, which can only lead to confusion. We replace these by the two complex
variables u and v, which are now manifestly independent:

z → u = 1√
2

(q
b

+ i
p

c

)
z� → v = 1√

2

(q
b

− i
p

c

)
.

(2.34)

Note also the inverse formulae

q = b√
2
(u + v)

p = − ic√
2
(u− v).

(2.35)

The differential equations (2.32) are now

ih̄u̇ = +
∂H
∂v

ih̄v̇ = −∂H
∂u

(2.36)

with the boundary conditions

u(0) = z′ v(t) = z′′�

v(0) = nothing special �= z′�

u(t) = nothing special �= z′′.
(2.37)

v(0) and u(t) come out of the calculation and do not have any simple relation to z′ and z′′,
except in the special case when there exists a real trajectory going from z′ to z′′ in time t . Then
and only then do we get v(0) = z′� and u(t) = z′′. Otherwise, the end points of the classical
path are truly complex in phase space. To complete the definitions, we rename these end points
as follows:

u(0) ≡ u′ v(0) ≡ v′ u(t) ≡ u′′ v(t) ≡ v′′. (2.38)

Given the change of variables, we note the following differentiation rules, which follow from
equations (2.34) and (2.35) and will be needed later:

∂

∂q
= ∂v

∂q

∂

∂v
+
∂u

∂q

∂

∂u
= 1√

2 b

(
∂

∂v
+
∂

∂u

)
∂

∂p
= ∂v

∂p

∂

∂v
+
∂u

∂p

∂

∂u
= i√

2 c

(
− ∂

∂v
+
∂

∂u

) (2.39)

∂

∂v
= 1√

2

(
b
∂

∂q
+ ic

∂

∂p

)
∂

∂u
= 1√

2

(
b
∂

∂q
− ic

∂

∂p

)
.

(2.40)

Let us rewrite f (z�, z), equation (2.15), in the continuous limit and in terms of the new
variables. Since f can also be written

τ

N−1∑
j=0

{
z�j+1 − z�j

2τ
zj − z�j+1

zj+1 − zj

2τ
− i

h̄
Hj+1,j

}
(2.41)

one might think that, in the limit τ → 0, this would reduce to∫ t

0
dt ′
[

1

2
(v̇u− u̇v)− i

h̄
H(u, v, t ′)

]
(2.42)
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but that would be a mistake. Recalling the earlier discussion, we realize that equation (2.42)
assumes that u(t) = uN , which is not equal to z′′, and it also assumes that v(0) = v0, which
is not equal to z′�. But in expression (2.15), uN or zN was z′′, and v0 or z�0 was z′�. To correct
this mistake, we must take out from the sum the two terms containing uN and v0, namely
− 1

2vNuN and − 1
2v0u0, and replace them by their correct values, namely − 1

2 |z′′|2 and − 1
2 |z′|2.

Consequently, the value of f in the limit τ → 0 should be

f =
∫ t

0
dt ′
[

1

2
(v̇u− u̇v)− i

h̄
H(u, v, t ′)

]
+

1

2
(v′′u′′ + v′u′)− 1

2
(|z′′|2 + |z′|2). (2.43)

Next we rewrite the product in equation (2.31), performing the limit N → ∞ and using
ln(1 + x) = x + O(x2):

lim
N→∞

N−1∏
j=1

{
1 + 2i

τ

h̄

∂2H
∂u2

j

Xj

}− 1
2

= lim
N→∞

exp

{
− 1

2

N−1∑
j=1

ln

(
1 + 2i

τ

h̄

∂2H
∂u2

j

Xj

)}

= lim
N→∞

exp

{
− i

τ

h̄

N−1∑
j=1

∂2H
∂u2

j

Xj

}

= exp

{
− i

h̄

∫ t

0
dt ′

∂2H
∂u2

(t ′)X(t ′)
}
. (2.44)

Altogether, the propagator is

K(z′′, t; z′, 0) = exp

{
− i

h̄

∫ t

0
dt ′

∂2H
∂u2

(t ′)X(t ′)
}

exp

{∫ t

0
dt ′
[

1

2

(
v̇u− u̇v

)− i

h̄
H
]

+ 1
2

(
v′u′ + v′′u′′)− 1

2

(|z′|2 + |z′′|2)}. (2.45)

We still have to write the continuous form of the discrete recursion formula (2.30) for
X(t). With (1−ax)2

1+bx = 1 − (2a + b)x + O(x2) equation (2.30) gives

Xj ≈ − iτ

2h̄

∂2H
∂v2

j

+Xj−1 −
(

2
iτ

h̄

∂2H
∂uj−1∂vj

+ 2
iτ

h̄

∂2H
∂u2

j−1

Xj−1

)
Xj−1. (2.46)

In the limit N → ∞ this leads to the nonlinear differential equation

Ẋ(t) = − i

2h̄

∂2H
∂v2

− 2
i

h̄

∂2H
∂u∂v

X(t)− 2
i

h̄

∂2H
∂u2

X2(t) (2.47)

with the initial condition

X(0) = 0. (2.48)

To solve this, we consider small variations in the solutions of Hamilton’s equations (2.36)
around a given solution v(t), u(t):

δu̇ = − i

h̄

∂2H
∂u∂v

δu− i

h̄

∂2H
∂v2

δv

δv̇ = +
i

h̄

∂2H
∂u2

δu +
i

h̄

∂2H
∂u∂v

δv.

(2.49)

It can be seen that the solution of equation (2.47) is X = 1
2
δu
δv

. The time derivative is

Ẋ = 1

2

δu̇

δv
− 1

2

δu

δv2
δv̇

= − i

2h̄

∂2H
∂u∂v

δu

δv
− i

2h̄

∂2H
∂v2

− 1

2

δu

δv

[
i

h̄

∂2H
∂u2

δu

δv
+

i

h̄

∂2H
∂u∂v

]
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= − i

2h̄

∂2H
∂v2

− i

h̄

∂2H
∂u∂v

δu

δv
− i

2h̄

∂2H
∂u2

(
δu

δv

)2

= − i

2h̄

∂2H
∂v2

− 2
i

h̄

∂2H
∂u∂v

X − 2
i

h̄

∂2H
∂u2

X2 (2.50)

which agrees with the differential equation (2.47). The initial condition X(0) = 0 can be
satisfied by picking δu(0) = δu′ = 0, δv(0) = δv′ arbitrary. The integrand in the first
exponential of equation (2.45) can be transformed with the help of equation (2.49)

i

h̄

∂2H
∂u2

X = i

2h̄

∂2H
∂u2

δu

δv
= 1

2

δv̇

δv
− i

2h̄

∂2H
∂u∂v

= 1

2

d

dt
ln δv − i

2h̄

∂2H
∂u∂v

(2.51)

so that the first exponent of equation (2.45) is

exp

{
− i

h̄

∫ t

0
dt ′

∂2H
∂u2

(t ′)X(t ′)
}

= exp

{
− 1

2

∫ t

0
dt ′
[

d

dt ′
(ln δv)− i

h̄

∂2H
∂u∂v

]}

=
√
δv′

δv′′ exp

{
i

2h̄

∫ t

0
dt ′

∂2H
∂u∂v

}
. (2.52)

It is understood that δv′/δv′′ is calculated with the initial condition δu′ = 0. The phase of the
square root evolves continuously with time, starting at 0 for t = 0. Because all the numbers
are generically complex, δv′′(t) does not usually have zeros; therefore the phase is always well
defined, barring an accident. In the end we obtain

K(z′′, t; z′, 0) =
√
δv′

δv′′ exp

{
i

2h̄

∫ t

0
dt ′

∂2H
∂u∂v

}
exp

{∫ t

0
dt ′
[

1

2

(
v̇u− u̇v

)− i

h̄
H
]

+ 1
2 (v

′′u′′ + v′u′)− 1
2 (|z′|2 + |z′′|2)

}
. (2.53)

Just as a plausibility check, consider the limit t → 0. In this case, the complex path has
u′′ = u′ = z′, v′ = v′′ = z′′�, and therefore K(z′′, 0; z′, 0) = exp{0} exp{0 + 1

2v
′u′ + 1

2v
′′u′′ −

1
2 |z′|2 − 1

2 |z′′|2} = exp{− 1
2 |z′|2 +z′z�′′− 1

2 |z′′|2} = 〈z′′|z′〉, which is the overlap of two coherent
states.

2.5. The complex action

In most discussions of Hamiltonian mechanics, one gains much simplicity and understanding
by defining the ‘action’, which is the quantity entering Hamilton’s variational principle and
the Hamilton–Jacobi equation. In the present problem, this is true also. The action is complex
in most cases, like the trajectories themselves and like the energy. It is given by the formula

S(v′′, u′, t) :=
∫ t

0
dt ′
[

ih̄

2
(u̇v − v̇u)− H(u, v, t ′)

]
− ih̄

2
(u′′v′′ + u′v′). (2.54)

The independent variables are v′′ and u′, the two end variables which define the classical
trajectory, and the time t ; u′′ and v′ must be understood as functions of these three variables.
Note thatu andv are proportional to 1/

√
h̄, sinceb and c in equation (2.34) are both proportional

to
√
h̄. Therefore the only term in S which depends on h̄ is

∫ t
0 H(u, v, t ′) dt ′. We shall show

in the following that this S is indeed the correct action for the boundary conditions we have.
Given its definition, S should be an analytic function of its variables most of the time, since
H(u, v) is analytic and the velocities u̇ and v̇ can be written as derivatives of H using Hamilton’s
equations (2.36). It would take an accident in the determination of the classical trajectory from
the boundary conditions to produce a singularity. Similarly, the functions u′′ and v′ should be
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analytic in v′′ and u′ most of the time; in fact, according to equation (2.60), they are essentially
the partial derivatives of S.

Suppose that we make small variations δv′′, δu′, δt in each of the independent variables.
This induces variations δu′′, δv′ in u′′ and v′. It also induces variations δu(t ′), δv(t ′) in the
trajectory itself. The consequent variation in S is

δS =
∫ t

0
dt ′
[

ih̄

2
(vδu̇− uδv̇ − v̇δu + u̇δv)− ∂H

∂v
δv − ∂H

∂u
δu

]

− ih̄

2
(v′′δu′′ + u′′δv′′ + v′δu′ + u′δv′) + δt

[
ih̄

2
(u̇′′v′′ − v̇′′u′′)− H(u′′, v′′, t)

]
.

(2.55)

We do two integrations by parts as follows:∫ t

0
dt ′ vδu̇ = v′′δu(t)− v′δu(0)−

∫ t

0
dt ′ v̇δu

−
∫ t

0
dt ′ uδv̇ = −u′′δv(t) + u′δv(0) +

∫ t

0
dt ′ u̇δv.

(2.56)

Since the lower limit 0 of the t ′-integral is not changed, we have

δu(0) = δu′ δv(0) = δv′. (2.57)

But the upper limit is changed from t to t + δt , hence

δu(t) = δu′′ − u̇′′δt δv(t) = δv′′ − v̇′′δt. (2.58)

Much simplification occurs when we carry this back into equation (2.55), and we find for the
variation in S

δS =
∫ t

0
dt ′
[(

ih̄u̇− ∂H
∂v

)
δv +

(
−ih̄v̇ − ∂H

∂u

)
δu

]
− ih̄(u′′δv′′ + v′δu′)− H(u′′, v′′, t)δt.

(2.59)

The first line says that paths satisfying Hamilton’s equations (2.36) have a stationary action S
when the independent variables v′′, u′, t are held fixed. The second line says that, for such a
classical trajectory, the derivatives of S with respect to these variables are

∂S

∂v′′ = −ih̄u′′ ∂S

∂u′ = −ih̄v′ ∂S

∂t
= −H(u′′, v′′, t). (2.60)

In the special case of a time-independent Hamiltonian, H(u′′, v′′) is the constant energy E , and
the last equality becomes

∂S

∂t
= −E . (2.61)

We are now able to express most of the coherent-state propagator, equation (2.53), in terms
of the action function. By equation (2.60) we have

δv′

δv′′ = i

h̄

∂2S

∂u′∂v′′ . (2.62)

Therefore the coherent-state propagator can be written

K(z′′, t; z′, 0) =
∑
ν

√
i

h̄

∂2Sν

∂u′∂v′′ exp

{
i

2h̄

∫ t

0
dt ′
(
∂2H
∂u∂v

)
ν

}

× exp

{
i

h̄
Sν(v

′′, u′, t)− 1

2

(|z′′|2 + |z′|2)} . (2.63)
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The sum over ν represents the sum over all (complex) classical trajectories satisfying the
boundary conditions, since there may be more than one. We have already mentioned (see
before equation (2.18)) that we were going to suppress this sum for purposes of clarity, and
we shall do so in the future again.

There is one very important caveat. The Hamiltonian function H(u, v, t) entering
equations (2.54) and (2.63) is not the original classical Hamiltonian of the problem, the quantal
version of which we used when we first wrote the path integral (2.5). As equation (2.33) shows,
this ‘script’ Hamiltonian is a smoothed version of the original one, obtained by folding it with
a Gaussian in phase space. This is one of the interesting features of formula (2.63). Another
interesting feature is the first exponential, which we shall write

e
i
h̄
I (2.64)

where the quantity I, with dimensions of action, is defined by

I(v′′, u′, t) := 1

2

∫ t

0
dt ′
(
∂2H
∂u∂v

)
. (2.65)

Though this I term was assuredly obtained in the past by various workers in the field, most
authors seem to have been in a big hurry to forget its existence. One simple and compelling
reason for not doing so is the following: when you calculate the harmonic oscillator (as we do
in section 6), you get the exact answer if you keep I, but you do not if you drop it.

There will be more discussion of I in sections 3 and 4. This, and only this, is the result
of making the standard semiclassical approximations on the coherent state propagator (2.10).
As far as we know, no formula equivalent to (2.63) has been in wide use before. Both Herman
and Kay [Her86, Kay94a, Kay94b] claim, in words only, that a particular formula follows
from a semiclassical treatment of the coherent-state propagator. In both cases the claim is not
justified and the formula is incorrect. In the next section, we shall see how other formulae can
be derived in which the two special features above are either absent or reversed. In sections 4
and 5 we shall compare with two other formulae in the literature.

For an additional note, we use equations (2.35) to write the integrand of I in terms of q
and p

∂2H
∂u∂v

= b2

2

∂2H
∂q2

+
c2

2

∂2H
∂p2

. (2.66)

Given formulae (2.3), we see that I is of order h̄. Whenever q and p are real, H is real,
therefore ∂2H/∂u∂v is real. Hence, if the classical trajectory happens to be real, I is real.

2.6. The tangent matrix

For the applications of our semiclassical formula (2.63) to be developed in sections 4 and 5,
we shall have to write the prefactor in terms of the elements of the tangent matrix M , which
connects small displacements of the classical trajectory about the initial point at time zero to
the evolved displacements at time t . Differentiating in equation (2.60), but keeping the variable
t constant, we can obtain the connection between initial and final displacements. In matrix
form it is

−ih̄

(
δu′′

δv′

)
=
(
Auv Avv
Auu Avu

)(
δu′

δv′′

)
(2.67)

with the notation

Auv = ∂2S

∂u′∂v′′ Avv = ∂2S

∂v′′∂v′′ Auu = ∂2S

∂u′∂u′ Avu = Auv. (2.68)
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Solving for δu′′ and δv′′ in terms of δu′ and δv′ yields(
δu′′

δv′′

)
= 1

Auv

(
i
h̄
(A2

uv − AuuAvv) Avv
−Auu −ih̄

)(
δu′

δv′

)
. (2.69)

If we callMuu,Muv , . . . the matrix elements of the tangent matrix (note: unlike Auu,Auv , . . . ,
these are not second derivatives) this last equation should also be(

δu′′

δv′′

)
=
(
Muu Muv

Mvu Mvv

)(
δu′

δv′

)
. (2.70)

Therefore we have

i

h̄

∂2S

∂u′∂v′′ = 1

Mvv

(2.71)

and we rewrite the propagator (2.63) as

K(z′′, t; z′, 0) =
∑
ν

1√
(Mν)vv

e
i
h̄
I exp

{
i

h̄
Sν(v

′′, u′, t)− 1

2

(|z′′|2 + |z′|2)} . (2.72)

The square root in the prefactor has an undetermined sign. To know which sign is correct,
one must start from t = 0 when the square root is simply unity, and proceed by continuity
along the trajectory, which can be done sinceMvv never vanishes. We shall meet an important
example of this in section 6.1.

Another useful representation of the tangent matrix is in terms of the scaled variables q/b
and p/c: (

δq ′′/b
δp′′/c

)
=
(
mqq mqp

mpq mpp

)(
δq ′/b
δp′/c

)
. (2.73)

The relation between the matrix elements above and those in equation (2.70) is

Muu = 1
2 (mqq +mpp + impq − imqp)

Muv = 1
2 (mqq −mpp + impq + imqp)

Mvu = 1
2 (mqq −mpp − impq − imqp)

Mvv = 1
2 (mqq +mpp − impq + imqp).

(2.74)

3. Ambiguities in the choice of path integral

There is more than one way of representing the propagator by a path integral in phase space in
terms of coherent states. The way we chose in section 2 is just the one adopted by most workers
in the field. Although each one of these different path integrals would give the same answer in
an exact quantum mechanical calculation, they may differ when semiclassical approximations
are made. In this section we shall discuss a number of such alternatives, and the implications
of these ambiguities for the validity of the approximations.

We begin with a qualitative remark. We introduced the path integral by splitting the
propagator (2.5) into many segments, each with infinitesimal time-interval τ , and then
introducing the unit operator (2.9) between each pair of adjacent segments. But the basis
|z〉 in terms of which the unit operator is written is vastly overcomplete (see [Vou97] for a
recent discussion with references), and therefore there is an infinite number of ways of writing
the unit operator in terms of the |z〉. The way chosen for equation (2.9) is only one of them. We
shall not pursue this approach to the ambiguous choice, but it does demonstrate the existence
of an enormous arbitrariness. Instead, we shall discuss two other aspects of the problem. The
first of these, through a different derivation of the path integral, leads to a different ‘effective
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Hamiltonian’. The second deals with the arbitrariness in operator ordering when one goes
from a classical Hamiltonian to a quantum mechanical one. It will turn out that both of them
will lead us to reconsider the significance of the first exponential (2.64) in the semiclassical
propagator (2.63).

3.1. Alternative forms of the path integral

In their introduction to their overview of coherent states [Kla85], KS discuss two ways of
arriving at a path integral, which they call ‘path integral—first form’ (p 60) and ‘path integral—
second form’ (p 69). The first form is the one we gave in section 2.1. The second form starts
from the ‘diagonal representation’ of the Hamiltonian operator, namely

Ĥ =
∫

|z〉h(z)d2z

π
〈z|. (3.1)

Given that we assumed (see second paragraph of section 2.1) that Ĥ was either a polynomial
in p and q or a converging sequence of such polynomials, this diagonal representation always
exists. The notation h(z) for the function in equation (3.1) is that of KS; we shall change it to
H2(z

�, z). This will be contrasted with the first-form Hamiltonian function which we called
H in equation (2.33), and which in this section we are going to call H1(z

�, z), assuming no
explicit time dependence. Equation (3.1) is now rewritten

Ĥ =
∫

|z〉H2(z
�, z)

d2z

π
〈z|. (3.2)

According to KS, the connection between H1 and H2 is

H1(z
�, z) =

∫
d2z′

π

∣∣〈z|z′〉∣∣2H2(z
′�, z′) =

∫
d2z′

π
e−|z−z′|2H2(z

′�, z′) (3.3)

H2(z
�, z) =

(
exp − ∂2

∂z�∂z

)
H1(z

�, z). (3.4)

In addition to these two effective Hamiltonian functions, there is also the original classical
Hamiltonian HC(z

�, z). All three are different.
A very common type of classical Hamiltonian isHC(q, p) = p2/2m+V (q), where, once

again, we assume that the function V (q) can be approximated by a polynomial. For such a
Hamiltonian, the choice of quantum mechanical operator Ĥ is straightforward. Then we can
work out the connection between HC, H1 and H2 for simple monomials. If we call x and y
the real and imaginary parts of z, respectively, this connection is given by the table

H2 HC H1

1 1 1
x x x

x2 − 1
4 x2 x2 + 1

4

x3 − 3
4x x3 x3 + 3

4x

x4 − 3
2x

2 + 3
16 x4 x4 + 3

2x
2 + 3

16
. . . . . . . . .

(3.T)

with an identical table for monomials of y. We see that, up to cubic terms, we have
HC = 1

2 (H1 + H2), but this does not remain true for higher powers. In a qualitative way,
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one can think of H1 as a smoothing of HC, and of H2 as an unsmoothing. This idea becomes
precise for monomials containing purely x or purely y. In the first case, we have

HC(x) =
√

2

π

∫
dx ′ e−2(x−x ′)2H2(x

′)

H1(x) =
√

2

π

∫
dx ′ e−2(x−x ′)2HC(x

′)
(3.5)

showing that HC is a smoothing of H2, and H1 a smoothing of HC. The relations for pure
functions of y are identical. If the monomial in HC contains both x and y, then the problem
of operator ordering arises; we shall discuss it in the next subsection.

We shall now sketch the derivation of the semiclassical propagator for the second form of
path integral. For simplicity, we exclude an explicit time dependence in Ĥ . With fewer details,
we repeat the steps of sections 2.1–2.3. We use the notation K1 for the propagator of the first
form and K2 for that of the second form. The starting point is equation (2.8). Following KS
(their equation (6.11)), we write each of the N exponentials as

e− i
h̄
Ĥ τ ≈

∫
|zj 〉e− iτ

h̄
H2(z

�
j ,zj )

d2zj

π
〈zj |. (3.6)

To facilitate the comparison betweenK2 andK1, it is convenient to write e− i
h̄
Ĥ t as the product

of N − 1 factors like (3.6) rather than N . In other words, we take (N − 1)τ = t , which
makes no difference in the limit of large N and infinitesimal τ . Then j in equation (3.6) goes
from 1 to N − 1. The complete propagator is

K2(zN , t; z0, 0) = 〈zN |(N − 1) factors similar to (3.6) |z0〉

=
∫ N−1∏

j=1

d2zj

π
e− iτ

h̄
H2(z

�
j ,zj )

N−1∏
j=0

〈zj+1|zj 〉. (3.7)

Contrast this with the first-form propagator, obtained from equations (2.10) and (2.12)

K1(zN , t; z0, 0) =
∫ N−1∏

j=1

d2zj

π

N−1∏
j=0

e− iτ
h̄
H1(z

�
j+1,zj )〈zj+1|zj 〉. (3.8)

Whereas in K1 the two arguments of H1 belong to two adjacent times in the mesh, the two
arguments of H2 in K2 belong to the same time. This difference is important and results in
different semiclassical propagators after one does the stationary-exponent approximation. The
stationarity conditions are found to be

z�j+1 − z�j − iτ

h̄

∂

∂zj
H2(z

�
j , zj ) = 0 j = 1, 2, . . . , N − 1

−zj + zj−1 − iτ

h̄

∂

∂z�j
H2(z

�
j , zj ) = 0 j = 1, 2, . . . , N − 1.

(3.9)

Contrast this with the stationarity conditions for K1, which are

z�j+1 − z�j − iτ

h̄

∂

∂zj
H1(z

�
j+1, zj ) = 0 j = 1, 2, . . . , N − 1

−zj + zj−1 − iτ

h̄

∂

∂z�j
H1(z

�
j , zj−1) = 0 j = 1, 2, . . . , N − 1.

(3.10)

The differences are subtle, but real. In the continuum limit, both sets of equations become the
classical equations of motion, but for Hamiltonian H1 in the case of K1, and for Hamiltonian
H2 in the case of K2. In both cases, neither z�0 nor zN appear in the equations, hence the
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trajectory is determined purely by z0 and z�N and is complex. The two actions S1 and S2,
coming from different Hamiltonians, are different.

Now we must calculate the prefactor. As in section 2.2, the exponent in (3.7) is taken at
the points z�j +η�j , zj +ηj and expanded to second order in the vicinity of the stationary points
z�j , zj . The zeroth order gives an expression calculated on the classical trajectory, the first
order vanishes by the stationarity conditions and the second order is a quadratic form leading
to a Gaussian integration. The quadratic form for K2 is

− iτ

h̄

N−1∑
j=1

[
1

2
η2
j

∂2

∂z2
j

+ η�jηj
∂2

∂z�j ∂zj
+

1

2
η�2j

∂2

∂z�2j

]
H2(z

�
j , zj )−

N−1∑
j=1

η�jηj +
N−2∑
j=1

η�j+1ηj .

(3.11)

According to equation (2.23) the quadratic form for K1 is

− iτ

h̄

N−1∑
j=1

1

2

[
η2
j

∂2

∂z2
j

H1(z
�
j+1, zj ) + η�2j

∂2

∂z�2j
H1(z

�
j , zj−1)

]

− iτ

h̄

N−2∑
j=1

η�j+1ηj
∂2

∂z�j+1∂zj
H1(z

�
j+1, zj )−

N−1∑
j=1

η�jηj +
N−2∑
j=1

η�j+1ηj . (3.12)

The comparison of K2 with K1 is easy if this Gaussian integration is performed by the
determinant method presented in the appendix of this paper. The details are given there
and the result is the following. The semiclassical K2 is given by equation (2.63) again, with
two changes: (i) of course, H1 is replaced by H2, and S1 by S2; (ii) the first exponent is − i

h̄
I

instead of + i
h̄
I.

In those cases where the semiclassical approximation is expected to be good, one can
then hope that the two changes cancel each other approximately. Both path integrals are
exact originally and therefore they should give the same propagator. But one semiclassical
propagator contains H1 and the other contains H2, which necessarily leads to different results
unless the Hamiltonians are purely quadratic. If both approximations are good, it must mean
that the difference is cancelled by another one: the change in sign of the first exponent.

Out of these considerations comes the justification for a procedure which has been used
in some of the past literature: leave out the first exponential in (2.63), or replace it by unity,
and do the classical calculations using the original classical HamiltonianHC instead ofH1 (or
H). This follows from the fact that, as equations (3.5) demonstrate, HC can be thought of as
more or less half-way between H1 and H2. It should then be associated with a first exponent
which is also half-way between first form and second form, and that means zero. Another
justification was given in [Kur89], where it is shown that this is the way of getting the exact
first-correction term in an expansion in powers of h̄. Hence the procedure is correct in the
extreme semiclassical limit, the limit of high quantum numbers. It may not be as good for low
energies, comparable to the energies of low excited states. We shall return to this question in a
future publication. In our opinion, the best procedure for low energies is to take at face value
the result (2.63) of the first-form path integral, using Hamiltonian H1 and including the first
exponential. This is because H1 is the smoothest of the three Hamiltonians, and therefore the
stationary-exponent approximation has the best chance of being good in this case. There is one
final question one might ask: besides the first form and the second form of path integrals, can
one find a continuum of integrals which interpolate smoothly between these two? The answer
is yes. Instead of the diagonal form (3.6) for the infinitesimal propagator, one can write it in
non-diagonal form thus:

e− i
h̄
Ĥ τ =

∫ ∫
|z′′〉d2z′′

π
〈z′′|e− i

h̄
Ĥ τ |z′〉d2z′

π
〈z′|. (3.13)
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We can approximate the matrix element as in section 2.1, which gives

e− i
h̄
Ĥ τ ≈

∫ ∫
|z′′〉d2z′′

π
〈z′′|z′〉e− iτ

h̄
H1(z

′′�,z′) d
2z′

π
〈z′|. (3.14)

After multiplying together many such expressions, one has to perform many integrals, twice as
many as before. But half of the variables do not occur in theH1 functions, and the integrations
over them are straightforward, the stationary exponent method being exact. This leads back to
the first form of path integral. However, nothing prevents us from mixing the two recipes (3.6)
and (3.14) in any proportions whatever, generating all possible interpolations between the first
and the second form. We shall not pursue this approach further.

3.2. Ambiguities in operator ordering

In the above discussion, many of the statements were precise only if each monomial in the
Hamiltonian contained only q or only p. We shall now generalize to arbitrary monomials,
which brings up the question of operator ordering. Given a classicalHC(q, p), there are many
corresponding Ĥ , because q and p do not commute and their order matters. Hence there
are many quantum mechanical problems and therefore many different results, the differences
becoming smaller as h̄ becomes smaller. The number of possible orderings, or combinations
of orderings, is infinite, but three of them stand out. The normal ordering consists in rewriting
HC in terms of z and z�, replacing in each monomial z by a and z� by a† (see equation (2.2)),
and writing all creation operators a† to the left of all annihilation operators a, making each
monomial look like cmna†man. The antinormal ordering does the same thing, but it writes the
creation operators to the right of the annihilation operators, thus cmnana†m. The third kind,
called Weyl ordering or symmetric ordering, has several equivalent definitions. One says to
write all possible orderings of the monomial, and then take the average of them all. Another
definition of the Weyl operator ÂW corresponding to a classical functionA(q, p) is as follows.
First, write A(q, p) as a double Fourier transform

A(q, p) =
∫ ∫

dα dβ B(α, β)ei(αq+βp). (3.15)

Then the Weyl operator is obtained by changing q and p into operators in this formula

ÂW =
∫ ∫

dα dβ B(α, β)ei(αq̂+βp̂). (3.16)

Some easily read references are [Hil84, Kur89] and [Vor89].
Thus we have three different ways of associating an operator with a function in classical

phase space. We can call them ÂN , ÂA and ÂW. Of the three, ÂW is the most ‘reasonable’
one in the classical limit. Conversely, there are three ways of associating a classical function
with an arbitrary operator Â, which are the inverses of the three transformations above. The
most interesting one (see [Hil84]) turns out to be the inverse of the Weyl transformation. It is

AC(q, p) =
∫

ds e
i
h̄
ps
〈
q − s

2

∣∣∣Â∣∣∣ q +
s

2

〉
. (3.17)

This is called the Wigner transformation. AC(q, p) is called the Weyl symbol of the operator
Â and is often denoted by AW(q, p). The other two inverse transformations also have names.
For the transformation which associates a normal-ordered operator with a classical function,
the inverse transformation is called the Q-transformation, and the classical function is called
the Q-symbol of the operator

A(q, p) �⇒ normal ordering �⇒ ÂN

AQ(q, p) ⇐� Q-transformation ⇐� Â.
(3.18)
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Similarly, the inverse of antinormal ordering is called the P -transformation, and the classical
function is the P -symbol of the operator

A(q, p) �⇒ antinormal ordering �⇒ ÂA

AP (q, p) ⇐� P -transformation ⇐� Â.
(3.19)

There is a very simple explicit expression for the Q-symbol

AQ(q, p) = 〈z|Â|z〉. (3.20)

For the P -symbol there is nothing as easy, but it is given implicitly by the requirement

Â =
∫

|z〉AP (q, p)d2z

π
〈z|. (3.21)

Of the three symbols, the Q-symbol, which is analytic in both z and z�, is the smoothest. The
P -symbol is the most likely to be singular. The Weyl symbol is in between.

Coming back to our subject, we see now that H1 is the Q-symbol associated with the
operator Ĥ , H2 is the P -symbol and the function which we have called HC(q, p) in the past
should be the Weyl symbol HW. As we had defined it for the pure monomials of q or p, it is
indeed the Weyl symbol. Moreover, everything we have said about HC so far will remain true
in general, provided we define HC as the Weyl symbol HW of Ĥ .

Let us summarize the results. We have three effective classical Hamiltonians associated
with the quantum mechanical Ĥ . Their smoothness decreases in the order H1, HW, H2. This
is evident from the relations

H1(q, p) =
√

2

π

∫
d2z′ e−2|z−z′|2HW(q

′, p′)

HW(q, p) =
√

2

π

∫
d2z′ e−2|z−z′|2H2(q

′, p′).
(3.22)

Going in the opposite direction, the relations are

H2(q, p) = exp

(
−1

2

∂2

∂z�∂z

)
HW(q, p)

HW(q, p) = exp

(
−1

2

∂2

∂z�∂z

)
H1(q, p).

(3.23)

In the extreme semiclassical limit, i.e. for large quantum numbers, the best formula for the
propagator is (2.63) calculated with HW throughout and omitting the first exponential (2.64).
For low energy, the best formula is (2.63) as it stands, i.e. calculated with H1 and with the
first exponential. The third formula, (2.63) calculated with H2 and with I replaced by −I
(see after equation (3.12) and also the last sentence of the appendix), is valid too, though we
do not know in what circumstances it might be expected to be better. All three propagators
have claims to being called ‘the’ semiclassical propagator in phase space, although there is no
simple derivation of the propagator with the Weyl Hamiltonian from path integrals. They are
all different since the classical Hamiltonians are different. All three are exact for the harmonic
oscillator and the free particle. But it would be wrong to calculate with H1 without including
the I term, or with H2 without including −I, or with HW including I.

3.3. Powers of h̄

In the following sections we shall use our semiclassical formula for the coherent-state
propagator in a number of different situations. In particular, we shall derive an initial-value
representation for the propagator in section 4 and the Green function in section 6. In order to
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perform these calculations consistently, we must state precisely what is the ‘philosophy’ of our
approximation, i.e. what terms must be kept and what terms can be discarded in calculations
involving this semiclassical propagator. In order to do so, we have to understand the difference
between calculations with the Weyl Hamiltonian, which does not involve h̄ explicitly, and those
with H1 ≡ H or H2. The discussion boils down to understanding the semiclassical formulae
in terms of powers of h̄.

We start by recalling the nature of the SPA for a simple one-dimensional integral. Let

A =
∫ +∞

−∞
g(x) e

i
h̄
f (x) dx. (3.24)

Assume that f has a single stationary point at x = x0 and that g(x) is a slowly varying function
of x. The SPA can be applied if h̄ is small. It amounts to expanding f (x) to second order
about x0 while keeping g(x) constant in the vicinity of x0. The integration is then reduced to
that of a Gaussian, which is straightforward. The result is

A ≈ A0 :=
√

2πh̄

|f (2)| g(x0) exp

(
iπs

4
+

i

h̄
f (x0)

)
(3.25)

where f (2) is the second derivative of f and s is its sign. This approximation neglects third
and higher derivatives of f , as well as all derivatives of g.

By keeping more derivatives, we can calculate the next non-zero contribution to the
integral. This is done in appendix B. The result is that A can be written as

A = A0
[
1 + ih̄R(x0) + O(h̄2)

]
(3.26)

where R(x0), given explicitly in equation (B.10), involves the first and second derivatives of g
and the third and fourth derivatives of f , all computed at x = x0. If instead we were to write
these corrections in the exponential, the result would look like this:

A =
√

2πh̄

|f (2)| g(x0) exp

(
iπs

4

)
exp

(
i

h̄

[
f (x0) + h̄2R(x0) + O(h̄3)

])
. (3.27)

Therefore, since what we do all along is a quadratic exponent approximation, we do not have
any hope of being able to calculate completely and accurately either the terms of order h̄ in
the integrals themselves, as (3.26) shows, or the terms of order h̄2 in quantities occurring in an
exponent with overall coefficient i/h̄, as shown in (3.27). However, since we actually do have
terms of this sort in our results, more discussion needs to take place.

The path integral calculation of the semiclassical propagator involves many integrals
similar to (3.24), which are evaluated by an appropriate quadratic exponent approximation.
The role of f (x) is played by the action and that of x0 by the stationary trajectory. In the
coordinate or momentum representations, neither the action nor the stationary trajectory depend
on h̄. In these cases, as in the one-dimensional integral (3.24), corrections beyond the SPA
are of order h̄ with respect to the semiclassical formula, as in equation (3.26). In the coherent
state representation, however, both the action and the stationary trajectory depend on Planck’s
constant via H. Therefore, the quadratic approximation already involves ‘nonclassical’ h̄-
dependent terms, and an expansion of the propagator in powers of h̄ similar to (3.26) becomes
somewhat confusing. Interestingly, it is shown in appendix C that the non-classical terms in
the action S cancel those in I up to first order in h̄. Therefore, the non-classical terms in the
‘effective phase’ S + I are of order h̄2, which is beyond the precision of the approximation.
It is not clear at this point whether these extra terms improve or not the semiclassical formula
with respect to a pure ‘Weyl’ calculation. We shall come back to this point in section 6 when
we discuss semiclassical quantization rules.
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In view of these results, this is what we should do in future calculations to be consistent
with our semiclassical procedure. We must distinguish two parts to the integrand. One is the
exponent that we make stationary. This is always multiplied by a factor i/h̄, and it usually
consists of some kind of action. The other part, which is everything else, we call the prefactor.
Then:

(i) In the stationary exponent, we can drop terms containing third- or higher-order derivatives
of H or S with respect to u and v, since they have not been taken into account in the
quadratic approximation. We should keep all terms of order h̄. They are the ones that are
expected to cancel out. All terms of order h̄2 can be discarded.

(ii) In the prefactor, we do not need to expand at all. Improving the result by expanding the
prefactor is an illusion. In addition, the prefactor may have a phase, which of course we
should keep.

4. An initial-value representation

The biggest difficulty in numerical applications using the coherent-state propagator is the root-
searching problem. This explains the recent popularity of the initial-value representations
(IVRs), which avoid this problem. In this section we shall transform the propagator (2.63)
into a semiclassical IVR propagator with the same initial and final states as the Herman–Kluk
(HK) propagator [Her84]. We had expected that the result would be the HK propagator itself,
but it did not turn out that way: our IVR propagator differs radically from HK’s. Along the
way, we shall point out the mistake made by Grossmann and Xavier [Gro98b] in their attempt
at a similar derivation. We shall return to the HK propagator in section 5, where we compare it
with our IVR and point out that its original derivation in [Her84] also contains a mistake very
similar to that made by Grossmann and Xavier.

The basic purpose of an IVR formula is the following. We are given at time 0 a
wavefunction 〈x|ψ(0)〉 in the usual configuration-space representation. We want to calculate
its evolution, i.e. we want to know

〈x|ψ(t)〉 = 〈x|K(t)|ψ(0)〉 (4.1)

again in configuration-space representation, K(t) being the usual Feynman propagator. We
want to do this semiclassically, in terms of integrals over classical trajectories, and we want
these trajectories to be specified purely in terms of the initial values of their coordinates.
The alternative, mixed values of the coordinates, some being initial and some final, leads
to unacceptable ‘root-search’ difficulties. Among the many IVR formulae that have been
proposed, it has been reported [Kay94b] that the HK expression [Klu86] is particularly easy
to use and gives particularly good results. To use this formula, one must first transform the
initial wavefunction to the coherent-state representation (a.k.a. the Bargmann representation)
by doing the integral

〈z′|ψ(0)〉 =
∫

〈z′|x〉 dx 〈x|ψ(0)〉. (4.2)

Then the propagation is carried out with a mixed propagator, which has coherent-state
coordinates initially and configuration coordinates finally,

〈x|ψ(t)〉 =
∫

〈x|K(t)|z′〉d2z′

π
〈z′|ψ(0)〉. (4.3)

The mixed propagator 〈x|K(t)|z′〉 is the quantity calculated by HK. Our purpose is also
to calculate it, but we obtain a different result (sections 4.1 and 4.2). Our result is the one
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that follows naturally when one makes the type of semiclassical approximation that was made
in section 2. Moreover, it has the essential property of conserving the normalization of the
initial wavefunction, which the HK propagator does not have, as we shall see. Since the HK
propagator has been so popular in the past, it is obviously desirable to make some numerical
comparisons between the two formulae. In section 5 we shall discuss the HK propagator in
some detail and show some simple one-dimensional comparisons, for which the new formula
is far superior. More tests are needed, including some for two-dimensional problems.

It should be clear that the mixed propagator 〈x|K(t)|z′〉 is simply a description of the
time-evolution of a Gaussian wavepacket. But a semiclassical approximation for this was
proposed long ago by Heller [Hel75]. Obviously we need to compare it with our result. We
do this in section 4.3. Once again the two formulae are different, but this time there is a strong
resemblance, which we discuss in the light of the ambiguities encountered in section 3. Neither
result is ‘better’ than the other: they have different regions of validity.

Finally, let us recall that the research on IVR formulae was originally motivated by the fact
that the semiclassical propagator in coordinate space, long known as the Van Vleck formula,
led to unpleasant root-search problems. In section 4.4 we examine the relationship between
our and Heller’s IVR with the Van Vleck propagator.

4.1. A mixed representation

Our starting point is the coherent-state propagator of equation (2.63). Our expression for the
mixed propagator is then

〈x|K(t)|z′〉 =
∫

〈x|z′′〉d2z′′

π
〈z′′|K(t)|z′〉

=
∫

dp′′ dq ′′

2πh̄
π− 1

4 b− 1
2 exp

{
− (x − q ′′)2

2b2
+

i

h̄
p′′
(
x − q ′′

2

)}

×e
i
h̄
I(v′′,z′,t)

√
i

h̄

∂2S

∂u′∂v′′

∣∣∣∣
u′=z′,v′′=z′′�

exp

{
i

h̄
S(v′′, z′, t)− 1

2

(|z′′|2 + |z′|2)} .
(4.4)

Before one does the integration over dp′′ dq ′′, it is good to remind oneself of the philosophy
spelled out in the second paragraph of section 2.2. The integrals to be done are actually two
real integrals over dp′′ and dq ′′, and if the functions are analytic in p′′ and q ′′, then it is all right
to deform the contour into the four-dimensional space of complex p′′ and complex q ′′. But
there are still two integrals and, therefore, in this four-dimensional space the integration runs
over a two-dimensional surface. Applying these thoughts to the last member of equation (4.4),
we see that the argument of the exponential in the first line is obviously analytic, and we can
rewrite it in terms of u′′ and v′′ without problem. In the second line we have

|z′′|2 = 1

2

(
q ′′2

b2
+
p′′2

c2

)
(4.5)

which is analytic and can also be written u′′v′′. Also in the second line, we have the function
S(v′′, z′, t) and its second derivative. For them, the argument of analyticity and change of
variables was made at an earlier stage, when the coherent-state propagator was derived in
section 2. Recall that S(v′′, u′, t) is a complex function of the real variables p′′, q ′′, p′, q ′

which depends on these variables only through the combinations v′′ and u′. The fact that it
is an action calculated along a complex trajectory is really not relevant to doing the integrals.
The thing which is relevant is that it is analytic in v′′ and u′, and therefore, if we have to
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do integrals over p′′, q ′′, p′ or q ′, we may continue them into the complex planes of these
variables. Everything that was just said about S(v′′, u′, t) can be repeated word for word about
I(v′′, u′, t), which also occurs in the last line of (4.4). Finally, another very relevant thing
is that we may wish to talk about the derivatives of S, and therefore we give them names as
follows:

i

h̄

∂S

∂v′′ = U ′′(v′′, u′, t)

i

h̄

∂S

∂u′ = V ′(v′′, u′, t).
(4.6)

Then, in terms of u′′ and v′′, which are more convenient variables than p′′ and q ′′, here are the
integrals we have to perform:

〈x|K(t)|z′〉 =
∫

du′′ dv′′

2π i
π− 1

4 b− 1
2 e

i
h̄
I(v′′,z′,t)

√
i

h̄

∂2S

∂u′∂v′′

∣∣∣∣
u′=z′,v′′=z′′�

× exp

{
− x2

2b2
+

√
2

b
xu′′ − 1

2
u′′2 − u′′v′′ +

i

h̄
S(v′′, z′, t)− 1

2
|z′|2

}
. (4.7)

We are going to do these integrals by the stationary-exponent approximation. First, we
must look for the stationary point of the exponent. We do not include the I term in the exponent,
because that would involve calculating third-order derivatives of H (see section 3.3). To find
a point in four dimensions, one needs four real equations, or two complex ones. If we call the
exponent in the second line of equation (4.7) 4, these two complex equations are

∂4

∂v′′ ≡ −u′′ + U ′′(v′′, u′, t) = 0

∂4

∂u′′ ≡
√

2

b
x − u′′ − v′′ = 0.

(4.8)

There are two crucial comments to be made here. One is that S does not depend on u′′ at all,
and therefore the second equation does not contain any derivative of S. In fact the second
equation, according to equation (2.34), says very simply

q ′′ = x. (4.9)

The second crucial comment is that u′′ and U ′′ are not the same. One is the independent
variable u′′. The other, U ′′, is a function of the other independent variable v′′. The fact
that U ′′ is obtained by calculating a certain complex trajectory is interesting, but irrelevant to
the integration problem: it is some function of v′′ . On the other hand, u′′ is an independent
variable; it can be anything, irrespective of the values of v′′ and u′. Therefore the first equation,
taken by itself, defines a two-dimensional surface in four-dimensional complex space. One of
the points on this surface, and only one, is the end point of the real trajectory which begins at
p′, q ′. To find the stationary point, one must combine this equation with the second one. These
two important facts are the ones that were missed by Grossmann and Xavier [Gro98b]. They
totally ignored the existence of the second equation, and they claimed that the first equation
said that the end point of the real trajectory was the stationary point. This is not so, unless
one happens to pick x equal to the value of q for this end point. For all other choices of x, the
stationary point is the end point of a complex trajectory. Its q ′′ is real and equal to x. But its
p′′ is complex. We give its value in equation (4.13).

We could take this result and use the stationary-exponent approximation in the vicinity of
the complex stationary trajectory. There are two defects to this approach. One is that finding
this complex trajectory is once again a root-search problem, since it is specified by one initial
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coordinate z′ and one final coordinate x. The other defect is the inconvenience of having to
do classical mechanics in the complex domain. It is obviously preferable, if one can, to set up
the practical applications in a way that involves the actual calculation only of real trajectories.
This can be done, and at the same time the wished-for IVR character is recovered. The idea is
that the complex trajectories which are in the vicinity of a real trajectory are a little bit like the
Gaussian which is in the vicinity of a stationary point when you do stationary-phase or steepest-
descent integration. In the latter case, most of the contribution to the integral comes from the
vicinity of the stationary point, so that you can approximate the exponent in this vicinity by a
quadratic, even though it is not really a quadratic. You do a Taylor expansion of the exponent
near the stationary point and you keep only the first two terms (actually, the first term vanishes).
Similarly, when summing over the whole bunch of classical trajectories, we expect most of
the contribution to the integral to come from the vicinity of the real trajectory, so that we can
approximate the complex trajectories nearby by doing some sort of Taylor expansion to second
order. The assumption is that the contribution of a complex trajectory falls off in a Gaussian-
like manner as it gets farther away from the real trajectory. This assumption is correct at least
for simple systems like the free particle and the harmonic oscillator and it has been shown
numerically to hold for the quartic oscillator as well [Xav96a].

Returning to equation (4.7), we see that three terms in it prevent us from doing the integral
exactly: the two terms containing the function S, one in the exponential and one in the
prefactor, and the term containing I. In accordance with the ideas expressed above, the S
in the exponential, which is the value of the action for the complex classical trajectory, will be
expanded to second order in powers of v′′ − vr , where vr (or zr �) refers to the final point of
the real classical trajectory issued from z′, thus

i

h̄
S(v′′, z′, t) ≈ i

h̄
S(vr , z

′, t) + ur(v
′′ − vr) +

1

2
γ (v′′ − vr)

2 (4.10)

with

ur = i

h̄

∂S

∂v′′

∣∣∣∣
u′=z′,v′′=vr

= vr
� (4.11)

and

γ = i

h̄

∂2S

∂v′′2

∣∣∣∣
u′=z′,v′′=vr

= Muv

Mvv

= mqq + imqp + impq −mpp

mqq + imqp − impq +mpp

. (4.12)

Here we have used equations (2.69) and (2.74) relating second derivatives of the action and
elements of the tangent matrix. A similar expansion to first order in v′′ − vr can be done in
the first equation (4.8), which allows us to calculate p′′, the momentum at the end point of the
complex trajectory

p′′ ≈ pr + i
1 − γ

1 + γ

c

b

(
x − qr

)
. (4.13)

As for the second derivative of S under the square root in the prefactor, it presents us with
a bit of a problem. We know it (with its factor i/h̄) to be equal to the inverse of Mvv , taken
at u′(= z′) and v′′. If we were to expand this in the vicinity of the real trajectory, we would
be taking derivatives of the tangent matrix, which is itself made up of second derivatives of
S, and going to higher order than anyone ever goes in this kind of semiclassical argument.
Common practice would say: just replace it by its value at the stationary point. Unfortunately,
as we already know, the stationary point is not the real trajectory. It is a complex trajectory,
hopefully rather close to the real one but not simple. Moreover, if we tried to do that, we would
be back into the pitfall of mixed initial and final conditions. Hence the only reasonable thing
to do for this presumably weakly varying term is to use its value for the real trajectory, which
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is the place that will turn out to give the maximum contribution anyway. (Of course there are
phase-space points q ′′ and p′′ for which the difference v′′ − vr is not small. But at these points
the propagator itself should be negligible.) The very same argument holds for the I term, since
it already involves second derivatives of H. Hence we shall replace it by the value it takes for
the real classical trajectory issued from (q ′, p′), and we shall call it Ir .

Here is the complete formula now, in terms of the variables u′′ and w′′ := v′′ − vr :

〈x|K(t)|z′〉 = π− 1
4 b− 1

2 e
i
h̄
IrMvv

− 1
2 exp

[
− x2

2b2
+

i

h̄
S(z�r , z

′, t)− 1

2
|z′|2

] ∫
du′′ dw′′

2π i

× exp

[
− 1

2
u′′2 +

1

2
γw′′2 − u′′w′′ +

(√
2

b
x − vr

)
u′′ + urw

′′
]

(4.14)

where it is understood that Mvv is taken for the real trajectory. The integral is now a pure
Gaussian and we can do it using formula (2.25), with

a1 = − 1
2 a2 = 1

2γ a3 = −1

b1 =
√

2

b
x − vr b2 = ur a2

3 − 4a1a2 = 1 + γ.
(4.15)

The two quantities

µ1,2 = −a3 ± 2
√
a1a2 = 1 ± i

√
γ (4.16)

must have a non-negative real part, which requires∣∣Im √
γ
∣∣ � 1. (4.17)

We have shown, with a fair amount of algebra, that this condition is indeed satisfied. According
to equation (2.25), the value of the Gaussian integral, i.e. the second line of equation (4.14), is

1√
1 + γ

exp
1

1 + γ


−ur

2

2
+ ur

(√
2

b
x − vr

)
+
γ

2

(√
2

b
x − vr

)2

 . (4.18)

All we need to do now is to simplify the result.
The new prefactor (1 + γ )−1/2, multiplied together with the other prefactor (Mvv)

−1/2,
yields (Mvv +Muv)

− 1
2 , which is the same as (mqq + imqp)

− 1
2 . Now let us rewrite S(z�r , z

′, t) in
terms of the usual action of Hamilton. Equation (2.54) says

i

h̄
S(z�r , z

′, t)− 1

2
|z′|2 =

∫ t

0
dt ′
[

1

2
(v̇u− u̇v)− i

h̄
H(u, v, t ′)

]
+

1

2
|zr |2. (4.19)

We rewrite the first term in the bracket in terms of p and q:

(v̇u− u̇v) = 1

2

(
q̇

b
− i

ṗ

c

)(q
b

+ i
p

c

)
− complex conjugate

= i

(
q̇

b

p

c
− q

b

ṗ

c

)
= i

h̄
(q̇p − ṗq) (4.20)

since bc = h̄. With an integration by parts we have∫ t

0
dt ′ (q̇p − ṗq) = 2

∫ t

0
dt ′ q̇p − pq

∣∣∣∣
t

0

= 2
∫ t

0
pdq − prqr + p′q ′ (4.21)
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where qr and pr are the final points of the real trajectory starting at (q ′, p′). As for the last
term 1

2 |zr |2 of equation (4.19), it will be convenient to write it 1
2urvr . Expression (4.19) is

therefore
i

h̄
S(z�r , z

′, t)− 1

2
|z′|2 = i

h̄
SH − i

2h̄
prqr +

i

2h̄
p′q ′ +

1

2
urvr (4.22)

where SH is Hamilton’s action

SH =
∫ f

i
(p dq − H dt ′) (4.23)

for the real trajectory. Carrying this into equation (4.14), whose second line is equation (4.18),
we find for the complete exponent in 〈x|K(t)|z′〉, in addition to the Ir term,

− x2

2b2
+

i

h̄
SH − i

2h̄
prqr +

i

2h̄
p′q ′ +

1

2
urvr

+
1

1 + γ

[
−u

2
r

2
− urvr +

γ

2
v2
r +

√
2

b
x(ur − γ vr) + γ

x2

b2

]
. (4.24)

This is where the serious work of simplification begins.
We start by gathering all the terms containing x and we complete the square in x, which

gives

− x2

2b2

1 − γ

1 + γ
+

x

b
√

2

2(ur − γ vr)

1 + γ
= −1 − γ

1 + γ
×
(

x

b
√

2
− ur − γ vr

1 − γ

)2

+
(ur − γ vr)

2

1 − γ 2
.

(4.25)

The first term on the right-hand side of equation (4.25), written in terms of pr and qr , becomes

−1 − γ

1 + γ

(
x

b
√

2
− qr

b
√

2
− i

1 + γ

1 − γ

pr

c
√

2

)2

= − 1

2

1 − γ

1 + γ

(
x − qr

b

)2

+
i

h̄
pr(x − qr) +

1

2

1 + γ

1 − γ

p2
r

c2
. (4.26)

Return now to expression (4.24) and gather all terms quadratic in (ur , vr), or in (qr , pr),
including the last term on the right-hand side of (4.25):

− i

2h̄
qrpr +

1

1 + γ

[
−u

2
r

2
− urvr +

1 + γ

2
urvr +

γ

2
v2
r +

(ur − γ vr)
2

1 − γ

]
. (4.27)

When this is written solely in terms of qr and pr , much simplification occurs and one is left
with the single term

−1

2

1 + γ

1 − γ

p2
r

c2
(4.28)

which cancels the last term of (4.26).
This is the end of the simplifications. The final formula is

〈x|K(t)|z′〉 = π− 1
4 b− 1

2√
mqq + imqp

e
i
h̄
Ir exp

[
− 1

2

1 − γ

1 + γ

(
x − qr

b

)2

+
i

h̄

{
pr
(
x − qr

)
+

1

2
p′q ′ + SH

}]
. (4.29)

This formula, and not the HK formula, is the logical consequence of transforming the
semiclassical coherent state propagator to a mixed representation by applying the standard
semiclassical approximations.
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4.2. Some properties of the mixed propagator

According to equation (4.29) the mean position of the packet 〈q̂〉 and its mean momentum
〈p̂〉 are given by qr and pr , the real classical trajectory originating at q ′, p′. Its squared width
〈(q̂ − qr)

2〉 comes out of the real part of the coefficient of the Gaussian, which should be and
is negative. Since we have

1 − γ

1 + γ
= mpp − impq

mqq + imqp

= 1 − i(mppmqp +mqqmpq)

m2
qq +m2

qp

(4.30)

we find

〈(q̂ − qr)
2〉 = b2

2

(
m2
qq +m2

qp

) = 8q2
class (4.31)

where 8q2
class is the classical spreading of a Gaussian initial ensemble corresponding to the

initial phase space distribution |〈p, q|p′, q ′〉|2. In similar fashion we have

〈(p̂ − pr)
2〉 = b2

2

(
m2
pq +m2

pp

) = 8p2
class. (4.32)

We see incidentally that the denominator of the prefactor in (4.29) can never vanish, and
therefore the mixed propagator can never be singular, because the determinant of the tangent
matrix must equal unity. This follows from symplecticity, which in one dimension is the same
as Liouville’s theorem.

Another straightforward calculation yields the normalization of the packet

N(t) =
∫

dx |〈x|K(t)|z′〉|2 = 1√
πb

√
m2
qq +m2

qp

∫
dx

× exp

{
−1

2

[
1 − γ

1 + γ
+

1 − γ �

1 + γ �

]
(x − qr)

2

b2

}
= 1. (4.33)

Normalization is conserved and equal to unity at all times, which is as it should be.
It may not be superfluous to mention once again that the sign of the square root in

equation (4.29) is to be determined by continuous displacement along the trajectory, given
that this square root is unity at t = 0.

4.3. Comparison with Heller’s IVR

Now we proceed to the comparison with Heller’s approximation mentioned earlier. This
approximation is also known as ‘the thawed Gaussian approximation’ or TGA. A different
derivation of the TGA was given later by Kay [Kay94a] and used by him in numerical
comparisons with other approximations [Kay94b]. Although Heller does not give a final
formula, while Kay does, we shall stick to Heller’s presentation, as we do not find Kay’s
arguments convincing: they seem to be based on convenience and (very limited) numerical
agreement, rather than solid basic principles. Heller’s paper assumes a Hamiltonian of the
form p2/2m + V (q). Here we shall consider a general Hamiltonian H(p, q) and we shall
carry the derivation all the way to an explicit formula, which Heller does not do. The result
will be that Heller’s approximation leads to a formula identical to our equation (4.29) except
for two differences: (1) the classical Hamiltonian that must be used to compute the trajectories,
instead of being the smoothed H or the Q-symbol defined in section 3, is the Weyl symbol
HW of the quantum mechanical operator; (2) the term e

i
h̄
Ir is absent. Hence the discussion

of section 3 returns to the fore: there exist indeed different approximations, all legitimately
derived, and the question becomes one of deciding under what circumstances one or the other
can be expected to be better. We already saw in section 3 that, in the extreme semiclassical
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limit, when h̄ becomes very small, Heller’s approximation is expected to be best [Kur89]. At
low energy, on the other hand, we expect (4.29) to be best. We gave a qualitative argument
for this in section 3, but we have also performed several numerical comparisons, which we
reserve for a future publication, as this paper is probably too long already.

Heller’s idea is to assume that the original wavepacket 〈x|z′〉 remains Gaussian as it
propagates, but that the parameters of the Gaussian change with time thus:

〈x|K(t)|z′〉 = exp
i

h̄

[
α(t)

(
x − q(t)

)2
+ p(t)

(
x − q(t)

)
+ β(t)

]
. (4.34)

He further assumes that q(t) and p(t), which are the expectation values of the operators q̂
and p̂, follow a real classical trajectory for some classical HamiltonianH(q, p). On the other
hand he takes α(t) and β(t) to be complex, so that there are six undetermined real functions in
the formula. The problem is to determine them. The exact quantum mechanical packet obeys
the Schrödinger equation with a certain quantum Hamiltonian operator Ĥ (q̂, p̂). What should
be the connection between H and Ĥ? The most straightforward assumption, and the one that
works for the simple problems of elementary quantum mechanics, is to say that they are Weyl
related, i.e. Ĥ is the Weyl operator associated with H , and H is the Weyl symbol associated
with Ĥ . But we do not want to make this assumption explicitly: it should come out of the
calculation, and it will.

Heller argues that, since the wavepacket is small, the only part of the quantum Hamiltonian
that matters is the part which, in phase space, refers to the vicinity of the classical trajectory,
i.e. the region where the wavepacket is appreciably different from 0. In that small region it is
permissible to expand the quantal Hamiltonian up to second order in the variables q̂ − q and
p̂ − p. This ‘local quadratic expansion’ is the embodiment in this case of the semiclassical
approximation, quite similar to the stationary-exponent approximation in section 2 and to the
second-order expansion in equation (4.10). Hence we expand the Hamiltonian operator as
follows:

Ĥ (q̂, p̂) = H(q, p) +Hq(q̂ − q) +Hp(p̂ − p) + 1
2

{
Hqq(q̂ − q)2 +Hpp(p̂ − p)2

+Hqp

[
(q̂ − q)(p̂ − p) + (p̂ − p)(q̂ − q)

]}
(4.35)

where q̂ is the operator ‘multiplication by x’, p̂ is −ih̄∂/∂x and Hq,Hp,Hqq,Hpp,Hqp are
the first and second derivatives ofH(q, p), which are functions of q and p and do not contain
any operators. The crucial point to note here is that, if formula (4.35) is true, the Weyl symbol
of the operator Ĥ (q̂, p̂) is simply H(q, p), without any additional terms. This comes out
from repeated applications of the Wigner transformation (3.17), where one does the integrals
by using the standard properties of the Dirac delta-function and its derivatives. Denoting the
Weyl symbol with the subscript W, one finds

(q̂)W = q (p̂)W = p

(q̂2)W = q2 (p̂2)W = p2

(q̂p̂)W = qp + 1
2 ih̄ (p̂q̂)W = pq − 1

2 ih̄

etc.

(4.36)

Note that theQ-symbol of the right-hand side of (4.35) would be very different. For instance,
while the Weyl symbol of (q̂ − q)2 vanishes, its Q-symbol is the squared width of the packet.
Thus we have chosenH(q, p) to be the Weyl symbol of Ĥ , and this is not a trivial choice. It is
however a purely arbitrary choice for now. The crucial moment will come when we prove that
q(t) and p(t) obey Hamilton’s equations for this particular classical H(q, p). This moment
is close at hand. Meanwhile, we note that the last bracket [· · ·] of (4.35) can be written

2(q̂ − q)(p̂ − p)− ih̄.
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Now we try to satisfy the Schrödinger equation ih̄∂ψ/∂t = Ĥψ . For ψ(t) we substitute
the wavepacket (4.34) and for Ĥ we substitute (4.35). We find

1

ψ
ih̄
∂ψ

∂t
≡ −α̇(x − q)2 + 2αq̇(x − q)− ṗ(x − q) + pq̇ − β̇

1

ψ
Ĥψ ≡ H(q, p) +Hq(x − q) + 1

2Hqq(x − q)2 + 2Hpα(x − q)

+Hpp

[
2α2(x − q)2 − ih̄α

]
+Hqp

[
2α(x − q)2 − 1

2 ih̄
]
. (4.37)

Matching powers of (x − q), we get the following three complex equations to determine the
six unknown real functions:

α̇ = −2α2Hpp − 2αHqp − 1
2Hqq (4.38)

2αq̇ − ṗ = 2αHp +Hq (4.39)

β̇ = pq̇ −H(q, p) + ih̄αHpp + 1
2 ih̄Hqp. (4.40)

We start with the imaginary part of (4.39), which gives

q̇ = Hp. (4.41)

Then the real part of the same equation says

ṗ = −Hq. (4.42)

Hence q(t) and p(t) follow a classical trajectory of H , provided that the latter is the Weyl
symbol of Ĥ . Two equations remain, (4.38) and (4.40).

To solve (4.38) we notice that this equation becomes identical to that for X(t),
equation (2.47), if we identify v with q, u with p and i

h̄
H with H . Following the calculation

that leads to equation (2.50), we find immediately

α = 1

2

δp

δq
(4.43)

where δq and δp are deviations from the classical trajectory, which satisfy

δq̇ = Hqpδq +Hppδp (4.44)

δṗ = −Hqqδq −Hpqδp. (4.45)

Using the tangent matrix equation (2.73) we get

α = 1

2

c
b
mpqδq

′ +mppδp
′

mqqδq ′ + b
c
mqpδp′ = 1

2

c
b
mpq + 2mppα

′

mqq + 2 b
c
mqpα′ (4.46)

where

α′ = 1

2

δp′

δq ′ = ih̄

2b2
= ic

2b
. (4.47)

Therefore

α = c

2b

mpq + impp

mqq + imqp

= ic

2b

mpp − impq

mqq + imqp

= ic

2b

1 − γ

1 + γ
. (4.48)
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Equation (4.40) can now be integrated. It can be written

β̇ = pq̇ −H(q, p) +
ih̄

2

δp

δq
Hpp +

ih̄

2
Hqp

= L +
ih̄

2δq

(
δpHpp + δqHqp

)
= L +

ih̄

2δq
δq̇

= L +
ih̄

2

d

dt
(log δq) (4.49)

where L is the Lagrangian. Integrating both sides gives

β = SH +
ih̄

2
log δq (4.50)

up to an additive constant, SH being Hamilton’s action (for the Weyl Hamiltonian), and with

δq = mqqδq
′ +
b

c
mqpδp

′ = δq ′
(
mqq +

2b

c
mqpα

′
)
. (4.51)

The initial value δq ′ is determined by β(0) = q ′p′/2 = ih̄/2 log δq ′, which gives

δq ′ = e−iq ′p′/h̄. (4.52)

Substituting equations (4.51), (4.52), and (4.47) into (4.50) gives

β = SH +
ih̄

2
log

[
δq ′
(
mqq +

2b

c
α′mqp

)]

= SH +
ih̄

2
log
[
e−iq ′p′/h̄(mqq + imqp)

]
= SH +

p′q ′

2
+

ih̄

2
log (mqq + imqp) (4.53)

or

e
i
h̄
β = 1√

mqq + imqp

e
i
h̄
(SH+p′q ′/2) (4.54)

up to a multiplicative constant.
With these expressions forα andβ, one sees immediately that the Heller wavepacket (4.34)

is identical to ours (4.29), except for the different Hamiltonian (Weyl’s) and the absence of the
Ir exponential. Equation (4.33) shows that the normalization of the Heller packet is conserved
at all times.

4.4. Recovering Van Vleck’s formula from the IVR

The semiclassical limit of the evolution operator in the coordinate representation is given by
the well known Van Vleck formula [Van28]. It is desirable, therefore, that other semiclassical
representations of this operator reduce to Van Vleck’s when transformed back to coordinates.
In this subsection we shall calculate

K(x ′′, t; x ′, 0) := 〈x ′′|K(t)|x ′〉 =
∫

〈x ′′|K(t)|z′〉d2z′

π
〈z′|x ′〉 (4.55)

for both mixed propagators, Heller’s and ours. The integration over q ′ andp′ will be performed
by the stationary-exponent approximation. We shall see that Heller’s approximation recovers
Van Vleck’s formula exactly. Our semiclassical approximation recovers it only in the limit of
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small h̄ (see discussion in section 3), but this is also the only limit in which the Van Vleck
approximation can be justified.

We start by inserting the Heller propagator in equation (4.55). Using expression (2.4) for
〈x|z〉 we get

KHeller(x
′′, t; x ′, 0) =

∫
dq ′ dp′

2πh̄

π− 1
2 b−1√(

mqq + imqp

)
× exp

[
−1

2

(
1 − γ

1 + γ

) (
x ′′ − qr

b

)2

+
i

h̄

{
pr
(
x ′′ − qr

)
+

1

2
p′q ′ + SH

}]

× exp

[
− (x

′ − q ′)2

2b2
− i

h̄
p′(x ′ − q ′/2)

]
. (4.56)

We call ξ = ξ(q ′, p′) the exponent in the second and third lines of (4.56). The stationary
conditions are ∂ξ/∂q ′ = 0 and ∂ξ/∂p′ = 0. We write ξ explicitly first:

ξ = − 1

2b2

[(
1 − γ

1 + γ

)
(x ′′ − qr)

2 + (x ′ − q ′)2
]

+
i

h̄

[
pr(x

′′ − qr) + p′(q ′ − x ′) + SH
]
. (4.57)

The derivatives are

∂ξ

∂q ′ = 1

b2

[(
1 − γ

1 + γ

)
(x ′′ − qr)

∂qr

∂q ′ + (x ′ − q ′)
]

+
i

h̄

[
∂pr

∂q ′ (x
′′ − qr)− pr

∂qr

∂q ′ + p′ +
∂SH

∂q ′ +
∂SH

∂qr

∂qr

∂q ′

]

= 1

b2

[
(x ′′ − qr)

((
1 − γ

1 + γ

)
mqq + impq

)
+ (x ′ − q ′)

]

= 1

b2

[(
1

mqq + imqp

)
(x ′′ − qr) + (x ′ − q ′)

]
(4.58)

where we have used ∂SH
∂q ′ = −p′, ∂SH

∂qr
= pr and equations (2.73). Similarly we find

∂ξ

∂p′ = i

h̄

[(
1

mqq + imqp

)
(x ′′ − qr)− (x ′ − q ′)

]
. (4.59)

The stationary conditions are satisfied if q ′ = x ′ and qr(q ′, p′, t) = x ′′. This last equation
defines p′ implicitly, so that the contributing trajectory is the one that leaves x ′ at time zero
and reaches x ′′ at time t . The value of ξ computed at the stationary trajectory is simply iSH/h̄.
In order to perform the integrals we need the second-order derivatives of ξ . The algebra is
straightforward and the results are

ξqq = − 1

b2

2mqq + imqp

mqq + imqp

(4.60)

ξqp = ξpq = −1

h̄

mqp

mqq + imqp

(4.61)

ξpp = − i

c2

mqp

mqq + imqp

. (4.62)

Notice that all derivatives of ξ were calculated keeping the elements of the monodromy matrix
fixed. Their variations would involve the computation of third- or higher-order derivatives
of S.
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Inserting all these expressions into equation (4.56), we find that the coordinate propagator
becomes

KHeller(x
′′, t; x ′, 0) = π− 1

2 b−1 1√
mqq + imqp

eiSH/h̄

×
∫

dQ dP

2πh̄
exp

[
1

2
(ξqqQ

2 + 2ξqpQP + ξppP
2)

]

= π− 1
2 b−1 1√

mqq + imqp

eiSH/h̄

h̄
√
ξqqξpp − ξ 2

qp

(4.63)

where Q and P are the variations of q ′ and p′ from the stationary point. The quantity under
the second square root in the last line is the determinant of the quadratic form in the second
line. By equations (4.60)–(4.62) it is equal to

ξqqξpp − ξ 2
qp = 2imqp

h̄2(mqq + imqp)
(4.64)

and the final result is

KHeller(x
′′, t; x ′, 0) = 1

b
√

2π imqp

eiSH/h̄ (4.65)

which is Van Vleck’s famous expression.
Given the close similarity between Heller’s wavepacket and ours, a calculation identical

to ours will obviously give the result

K(x ′′, t; x ′, 0) = 1

b
√

2π imqp

ei(SH+I)/h̄ (4.66)

all classical quantities being calculated with the smoothed Hamiltonian H instead of the Weyl
H . This reduces to the Van Vleck formula for small h̄, and it might well be better for larger h̄,
but we have no evidence for this at the moment.

5. Comparison with the Herman–Kluk propagator

In addition to Heller’s thawed Gaussian approximation, there is in the literature a different
IVR formula for the mixed propagator 〈x|K(t)|z〉. This is the HK formula [Her84], derived
by convoluting the Van Vleck propagator with coherent states and performing the resulting
integrals by the method of stationary phase. This formula has been used many times in the last
few years.

We have already pointed out in section 4.1 the mistake of Grossmann and Xavier [Gro98a]
in their tentative derivation of the HK formula from the semiclassical coherent-state
propagator (2.63). In fact, in their original paper [Her84], Herman and Kluk make a similar
mistake in their evaluation of the stationary phase integrals. When performing these integrals
they find (as we found in section 4.1) that the stationary trajectory is complex and given
by mixed boundary conditions (equations (16) and (17) of [Her84]). However, instead of
expanding the exponent of the integrand for this complex trajectory about a nearby real
trajectory, they make a change of variables to initial position and momentum and assume
these new variables to be real. Therefore, from the point of view of semiclassical analysis, the
HK formula is incorrect. In section 5.2 we shall discuss why, in spite of that, it may still work.
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Here is the HK formula, for the mixed representation introduced in (4.3), taken
from [Klu86] with some adjustment of notations:

〈x|K(t)|z′〉HK = π− 1
4 b− 1

2

√
1
2

(
mpp +mqq − imqp + impq

)
× exp

[
−1

2

(
x − qr

b

)2

+
i

h̄

{
pr (x − qr) +

1

2
p′q ′ + SH

}]
. (5.1)

Once again, the Ir term is absent and the classical Hamiltonian used by HK is the Weyl
Hamiltonian. Besides these, there are two other differences between equation (4.29) and
equation (5.1), both of them quite important at first sight. One is in the coefficient of the
Gaussian exponent, the other is in the prefactor. The coefficient (1 − γ )/(1 + γ ) of the
Gaussian in (4.29) was essential for obtaining the right semiclassical widths (4.31) and (4.32),
but it is absent in HK! The difference in the prefactors is also astonishing. One formula has
the square root occurring in the denominator and the other in the numerator. But actually the
two prefactors are related by√

1

2

(
mpp +mqq − imqp + impq

) = 1√
mqq + imqp

√
1 + γ

1 − |γ |2 (5.2)

which shows that both differences between the two formulae imply that HK set γ equal to 0.
This is quite generally incorrect, except for the plain harmonic oscillator, for which both
formulae give identical results.

There is another major difference between formulae (4.29) and (5.1), the normalization,
which is for (5.1)

NHK(t) = 1

2
√
πb

√
(mqq +mpp)2 + (mpq −mqp)2

∫
dx exp

{
− (x − qr)

2

b2

}

= 1√
1 − |γ (t)|2

. (5.3)

This normalization is not conserved since γ is usually time dependent. This is a grave flaw
which shows up in almost every example. For the free particle, for instance, (4.29) is exact,
while (5.1) fails completely in describing the spreading of the wavepacket.

It may be argued with some validity that, since the |z′〉 form an overcomplete set, the fact
that the propagation of each |z′〉 according to HK is wrong does not necessarily mean that a
wrong result will always occur when a |z′〉-integral is performed, as in equation (4.3). This is
in fact a crucial point concerning the applicability of the HK formula, and we shall discuss it
in detail in section 5.2.

5.1. A numerical example

We show here a detailed numerical illustration of the differences between HK and our
semiclassical IVR formula. We consider the scattering of a particle with initial wavefunction
〈x|z′〉 by a potential barrier. We choose the following Hamiltonian to test our results:

H = p2

2
+ V0

[
eα(x−A) + e−α(x+A)

]
= p2

2
+ 2 V0e−αA cosh αx (5.4)

where V0, α and A are parameters. The first term in the potential function represents an
exponential wall located at x = +A. The second exponential closes the system at the left end
with a second wall at x = −A.
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The wavepacket will be launched from x = 0 with positive momentum. If A is large
compared with the coherent-state width b, the packet will not see this left wall in its way
towards the first collision. However, the fact that the motion is bound simplifies the quantum
mechanical treatment, avoiding the complications of the continuous spectrum. We have set
A = 5 and α = V0 = 1 for the potential and q ′ = 0, p′ = 1 and b = 0.3 for the initial coherent
state |z′〉. Planck’s constant was set to h̄ = 0.05, which gives c = h̄/b ≈ 0.167.

For short times the particle experiences almost no force, being well described by the free
particle propagation. In this approximation the classical trajectory is just

q = q ′ + p′t
p = p′.

(5.5)

All the quantities entering the semiclassical formulae can be computed immediately and the
result is

mqq = mpp = 1 mpq = 0 mqp = ct/b

SH = p′2 t/2 − c2t/4 Ir = c2t/4
γ = itc/(itc + 2b).

(5.6)

Substituting these expressions in (4.29) gives

〈x|K(t)|z′〉 = π− 1
4 b− 1

2√
1 + itc/b

exp

[
− 1

2

1

1 + itc/b

(
x − q ′ − p′t

b

)2

+
i

h̄

{
p′(x − q ′ − p′t

)
+

1

2
p′q ′ +

1

2
p′2t

}]
(5.7)

which coincides with the exact quantum mechanical result. The HK formula, on the other
hand, gives

〈x|K(t)|z′〉HK = π− 1
4 b− 1

2

√
1 − itc/2b exp

[
− 1

2

(
x − q ′ − p′t

b

)2

+
i

h̄

{
p′(x − q ′ − p′t

)
+

1

2
p′q ′ +

1

2
p′2t

}]
. (5.8)

This shows that HK not only describes poorly the width of the evolved packet but it also
produces a non-physical increase in the total probability.

For times of the order of A/p′ the free-particle approximation is no longer valid and
we have to solve the problem numerically. The exact quantum mechanical solution of
H |;n〉 = En|;n〉 for the Hamiltonian (5.4) was performed by diagonalizingH using as basis
states 〈x|φn〉 = 1√

L
sin (nπx/2L + nπ/2)where the widthL is chosen such thatV (L) = Emax.

This is in fact the most accurate method (when you can use it). Emax is an upper limit to the
eigenenergies to be calculated and it is related to the number N of basis states used in the
diagonalization by Emax = N2π2h̄2/(8L2). This guarantees that the basis states span the
energy interval from 0 to Emax and that the part of the potential with −L � x � L has
V (x) < Emax. We have used N = 400 in our computations, which gives Emax ≈ 9.4 and
L ≈ 7.2. With this choice the first 260 energy levels converge with at least five digits (as
compared with a larger diagonalization), spanning an energy interval from 0 to 5.5. The initial
wavepacket 〈x|z′〉 can be easily expressed in terms of the |φn〉 basis and, therefore, in the basis
|;n〉 of eigenstates of H .

The semiclassical calculation of both HK and our semiclassical formula needs only one
single trajectory starting from (q ′, p′) and its tangent matrix to compute the whole function
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Figure 1. Square modulus of the time-evolved coherent state launched from q ′ = 0 and p′ = 1
for the initial wavepacket at t = 0 and exact and semiclassical calculations at t = 4, 6, 8 and 10.
The long-dashed curve shows the potential function and the dashed bar shows the location of the
classical turning point. The solid curve shows the exact propagation, the short-dashed curve shows
our semiclassical formula and the dotted curve shows the HK approximation.

〈x|K(t)|z′〉. In our formula this trajectory is a solution of Hamilton’s equations for the
smoothed Hamiltonian 〈v|Ĥ |u〉, which is given by

H = p2

2
+ 2 V1e−αA cosh αx + h̄2b2/4 (5.9)

where V1 = V0 exp (b2α2/4). The results are shown in figure 1 showing the square modulus
of the wavefunction for the times t = 0, 4, 6, 8 and 10. The Gaussian at t = 0 represents the
initial coherent state. The long-dashed curve shows the (properly scaled) potential function
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and the dashed vertical bar shows the location of the classical turning point. The lines at t = 4
show the time-evolved wavefunction according to the exact calculation (solid), our formula
(short-dashed) and the HK approximation (dotted). Notice the increase in the height of the HK
Gaussian, in opposition to the exact evolution, which spreads and decreases. Our semiclassical
formula is in very good agreement with the exact calculation. For t = 6, one has the impression
that HK is not so bad, since the wavepacket height increases again. That is, however, only a
fortuitous occurrence, as demonstrated in for t = 8 and for t = 10. For longer times the peak
of the HK Gaussian increases more and more, whereas the exact wavepacket height decreases
to compensate for the spreading. At times of the order of 25 (not shown) the exact propagator
(and our semiclassical formula) has a peak of height around 0.2 while HK’s peak is around 8.
At this time the width in HK is also completely wrong.

5.2. Van Vleck’s formula and the HK propagator

We saw in the previous subsection that the propagation of Gaussian states via HK is very
imperfect. It works only for harmonic potentials or for very short propagation times. In spite
of this, the HK formula became rather popular in the last 5 years, and was applied to several
problems in chemical physics. Among those we cite the photodissociation of CO2 [Wal95],
the collinear scattering of H2 by H [Gar96], and the non-adiabatic dynamics in pyrazine
molecules [Tho00]. Several theoretical articles were also published, testing the HK formula
in model systems [Kay94b, Mai00] or proposing modifications in the formula for increasing
its accuracy [Her97, Tho00]. All these applications deal, not with the plain mixed propagator
〈x|K(t)|z′〉, but with integrals over the phase space variables q ′ andp′, such as in equation (4.3).

The question is then how a poor time evolution of Gaussian wavepackets, as in HK, may
produce acceptable results after integration over q ′ and p′. In this subsection we shall clarify
this point and, at the same time, show why HK is so expensive computationally [Wal95]
and sometimes just does not work [Mcc00]. First of all we shall calculate the coordinate
propagator (4.55) using the semiclassical formula of HK for 〈x ′′|K(t)|z′〉. Once again the
integration over q ′ and p′ will be performed by the stationary-exponent approximation, just
as we did in section 4.4. We shall see that HK does recover Van Vleck’s formula [Van28]
exactly! And that is the reason why sometimes it works. At the end of this subsection we shall
comment on this result and discuss why HK does not lead to long-time convergence when
the integrals over q ′ and p′ are performed numerically. We shall also point out why the HK
prefactor diverges for chaotic trajectories when the correct prefactor should, instead, go to
zero.

We use the same notation as in section 4.4 and follow the same steps. The coordinate
propagator for HK can be written

KHK(x
′′, t; x ′, 0) =

∫
dq ′ dp′

2πh̄
π− 1

2 b−1

√
1

2

(
mpp +mqq − imqp + impq

)
eξ(q

′,p′) (5.10)

where the exponent ξ(q ′, p′) and its derivatives are

ξ = − 1

2b2
[(x ′′ − qr)

2 + (x ′ − q ′)2] +
i

h̄
[pr(x

′′ − qr) + p′(q ′ − x ′) + SH] (5.11)

∂ξ

∂q ′ = 1

b2
[(x ′′ − qr)(mqq + impq) + (x ′ − q ′)] (5.12)

∂ξ

∂p′ = i

h̄
[(x ′′ − qr)(mpp − imqp)− (x ′ − q ′)]. (5.13)

The stationary conditions are satisfied if q ′ = x ′ and qr(q ′, p′, t) = x ′′ and the value of ξ
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computed at this trajectory is iSH/h̄. The second-order derivatives are

ξqq = − 1

b2
[1 +mqq(mqq + impq)] (5.14)

ξqp = ξpq = − i

h̄
[1 −mqq(mpp − imqp)] = −1

h̄
mqp(mqq + impq) (5.15)

ξpp = − ib

ch̄
mqp(mpp − imqp). (5.16)

Inserting all these expressions into equation (5.10), we find that the coordinate propagator
becomes

KHK(x
′′, t; x ′, 0) = π− 1

2 b−1
√

1
2

(
mpp +mqq − imqp + impq

)
eiSH/h̄

×
∫

dQ dP

2πh̄
exp

[
1

2
(ξqqQ

2 + 2ξqpQP + ξppP
2)

]

= π− 1
2 b−1

√
1

2

(
mpp +mqq − imqp + impq

) × eiSH/h̄

h̄
√
ξqqξpp − ξ 2

qp

. (5.17)

Once again the quantity under the square root in the denominator is the determinant of the
quadratic form in the second line, which is

ξqqξpp − ξ 2
qp = i

h̄2mqp(mpp +mqq − imqp + impq). (5.18)

The final result is

KHK(x
′′, t; x ′, 0) = 1

b
√

2π imqp

eiSH/h̄ (5.19)

and it coincides with the Van Vleck formula (4.65).
We can now understand why HK may sometimes work, even if it is not a correct

semiclassical formula, and we can also understand the origin of its main drawbacks.
The latter include the very slow convergence of the integrals over q ′ and p′ when done
numerically [Wan00, Mcc00], the lack of normalization [Her84] and the blow-up of the
prefactor for chaotic trajectories [Mai00]. In fact, numerical convergence of the integrals over
q ′ and p′ is often achieved only after resorting to smoothings [Her97, Mcc00, Tho00, Sun00],
and the results have not always been satisfactory.

The reason why HK does sometimes give good results is precisely that it is able to recover
Van Vleck. In fact, Kay [Kay94a] derived the HK formula by making an ansatz for the
propagator and demanding that this ansatz satisfy the basic condition of agreeing with Van
Vleck. In words, if one insists on keeping the width of the propagated wavepacket constant,
then one must arrive at the HK pre-factor if one wants to get Van Vleck when integrating over
q ′ and p′. The price paid for doing so is non-conservation of the norm, a high price to say
the least. Therefore, if HK is to be used at all, it has to be under an integral. However, even
when integrated, HK leads to very slow convergence and oscillatory behaviour, especially at
long times. To see why this happens, we note that the square root of the determinant of the
quadratic form in the stationary integral (5.17) is a measure of the phase-space area 8q ′8p′

that matters in the integration. We have

(8q ′8p′)HK ≈ 1√∣∣ξqqξpp − ξ 2
qp

∣∣ = h̄√|mqp|
1√|mpp +mqq − imqp + impq |

. (5.20)

As we saw in section 5.1,
√|mpp +mqq − imqp + impq | increases with time, for our numerical

example as well as for the free particle. This means that the relevant phase-space zone of
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initial trajectories that one needs to sample gets smaller with time. The physical interpretation
of this is very simple: any initial swarm of trajectories spreads as time passes. However, only
those trajectories in the neighbourhood of the one connecting x ′ to x ′′ contribute significantly.
The size of this neighbourhood is determined by the size of the propagated wavepacket. In the
case of HK the propagated packet keeps its width fixed at 8q8p = bc = h̄. For long times
the initial spread of trajectories that end inside this small region shrinks very fast. This is why
the numerical integration of equation (5.10) by sampling initial trajectories is bound not to
converge for long times, since very few trajectories are going to be picked up in the relevant
region.

Compare this with the relevant phase-space spread for the integration with our formula

(8q ′8p′) ≈ 1√∣∣ξqqξpp − ξ 2
qp

∣∣ = h̄√
2mqp

√|mqq + imqp|. (5.21)

We know that
√|mqq + imqp| increases with time, since the wavepacket spreads, and so does

the phase space region of contributing trajectories, ensuring an integration which must be more
efficient.

We also mention that the application of semiclassical formulae to chaotic systems is known
to be difficult due to the exponential proliferation of contributing trajectories from x ′ to x ′′

for long times. This is compensated in part by the exponentially small contribution of each
individual orbit to the propagator. The HK prefactor, however, assigns an already divergent
contribution to each of these trajectories, leaving no hope for accurate results [Mai00].

As a final comment we note that the smoothing technique introduced by Herman [Her97]
has the role of cutting off the contributions from trajectories whose action have a large first-
order variation. In our semiclassical formula this cutoff is performed automatically by the
prefactor. This is in fact exactly what one expects from a stationary phase integral.

6. The energy representation

In the special case of time-independent systems, the Fourier transform in time of the coherent-
state propagator, which we shall refer to as the (coherent-state) Green function, has poles
at the quantized energy levels. For its diagonal elements (z′ = z′′) the residues are the so-
called Husimi distributions, i.e. the absolute squares of the eigenfunctions in the coherent-state
representation, which are also called the Bargmann wavefunctions. In this section we shall
derive the semiclassical expressions for the poles and residues of the Green function. We shall
obtain from them the semiclassical quantization rule for the energy levels and the semiclassical
Husimi distributions.

6.1. The monodromy matrix in one dimension

When the trajectory is a periodic orbit, with the initial point returning to itself after the period
T , the tangent matrixM of section 2.6 is called the monodromy matrix. In the next subsections
it will be necessary to know the element Mvv for a real periodic orbit traversed n times, i.e.
for t = nT . We shall calculate it here. First we shall review a general formula for arbitrary
canonical variables, then we shall switch back to the (u, v) variables.

Let Q and P be canonical variables and H(Q,P ) the Hamiltonian. We want to find the
monodromy matrix M for periodic orbits in the (Q, P ) representation. M has four elements,
which we shall determine from four linear equations. For the first two equations we apply M
to (Q̇, Ṗ ), the velocity vector in phase space. This should yield this vector again, because a
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small displacement along the trajectory maps onto itself. Thus

M

(
Q̇

Ṗ

)
=
(
Q̇

Ṗ

)
. (6.1)

For the other two equations we consider a small displacement (δQ, δP ) non-collinear with
(Q̇, Ṗ ), and we assume for now that the Hamiltonian is not harmonic, so that the period T of
a periodic orbit depends on its energy. Then (δQ, δP ) points to another periodic orbit, with
a different period T + δT and a different energy E + δE. When we apply the M matrix to
(δQ, δP ), since the propagation time is onlyT , the result falls short of the original displacement
by δT× (velocity), hence

M

(
δQ

δP

)
=
(
δQ

δP

)
− δT

(
Q̇

Ṗ

)
. (6.2)

Obviously, given the four equations (6.1) and (6.2), M must have the form

M = 11 +N (6.3)

where N must obey the four equations

N

(
Q̇

Ṗ

)
= 0 (6.4)

N

(
δQ

δP

)
= −δT

(
Q̇

Ṗ

)
. (6.5)

From equations (6.4) one sees that N must have the form

N =
(
Ṗ a −Q̇a
Ṗ b −Q̇b

)
(6.6)

with a and b still unknown. From equations (6.5) one calculates a and b as

a = δT

δE
Q̇ b = δT

δE
Ṗ (6.7)

where δE, the energy difference, actually appears as Q̇δP − Ṗ δQ, which is δE by Hamilton’s
equations. The final form of the monodromy matrix in the (Q, P ) representation is therefore

M = 11 +
dT

dE

(
Q̇Ṗ −Q̇2

Ṗ 2 −Q̇Ṗ
)

(6.8)

where dT/dE is the derivative of T (E), the period of the orbit as a function of its energy.
Although we restricted ourselves to the anharmonic case, it is obvious that this formula holds
for the harmonic case also, for which dT/dE vanishes.

We shall now apply this to the variables u and v. But the latter are not quite true canonical
variables because of the factor ih̄ in the equations of motion (2.36). To avoid this source of
confusion we define temporary canonical variables U = √

ih̄u and V = √
ih̄v. Then the

general result (6.8) certainly applies to U and V . When we reintroduce u and v, we find for
the monodromy matrix in the (u, v) representation

M(u, v, T ) = 11 + ih̄
dT

dE
4 (6.9)

where 4 is given by

4 =
(
u̇v̇ −u̇2

v̇2 −u̇v̇
)
. (6.10)
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It is easy to check that, because 42 = 0, the monodromy matrix for n traversals of the orbit is
just

M(u, v, nT ) = M(u, v, T )n = 11 + nih̄
dT

dE
4. (6.11)

In the next subsections we need only one matrix element, which we denote by

(Mn)vv = 1 − nih̄
dT

dE
u̇v̇. (6.12)

6.2. Prologue: the Green function for the harmonic oscillator

The Feynman-type propagator KF(z
′′, t; z′, 0) in the coherent-state representation, like other

such propagators in quantum mechanics, is discontinuous at t = 0. One distinguishes between
the ‘forward propagator’, which is defined by equation (2.5) for t > 0 but vanishes for t < 0,
and the ‘backward propagator’, which vanishes for t > 0. The Green function is the Fourier
transform of the forward propagator, hence it is obtained by integrating the time only in the
interval t ∈ [0,∞]. We are interested in its diagonal elements, which we denote by

G(z,E + iγ ) := 1

ih̄

∫ ∞

0
dtK(z, t; z, 0)ei(E+iγ )t/h̄. (6.13)

The small positive quantity γ is introduced for convergence; at the end it will be set equal to 0.
When we insert the semiclassical propagator (2.72), G becomes

G(z,E + iγ ) = 1

ih̄

∑
ν

∫ ∞

0
dt

1√
(Mν)vv

exp
[
φν(t)

]
(6.14)

with

φν(t) = i

h̄

[
Sν(v

′′, u′, t) + Iν(v′′, u′, t) +
ih̄

2

(|z′′|2 + |z′|2) + (E + iγ )t

]
. (6.15)

Instead of the variables v′′ and u′, we could also have written equation (6.15) in terms of
the single variable z, since u′ = z and v′′ = z�. But this does not mean that the trajectory
going from z to z in some arbitrary time t is periodic. As we have already discussed (see
before equation (2.38)), the trajectory is usually complex and neither u nor v match at the end
points. However, for the case of interest here, namely one-dimensional bound systems, there
exists for each phase-space point z a (minimal) time T = T (z) for which the orbit through
z is periodic and real. Then the end points do match and T is the period. Obviously this
particular time t = T will play a special role in the integration of equation (6.13), and so will
its multiples t = nT , which correspond to repeated traversals of the periodic orbit. Therefore,
after evaluating the integral (6.13) by the stationary exponent method, we shall expand the
stationary time t0 = t0(z, E) about the classical period nT (z). The resulting Green function
will be a good approximation to the actual Green function G(z,E) only for arguments z and
E satisfying t0(z, E) ≈ nT (z).

Before we carry out the calculation ofG(z,E) for a general Hamiltonian, it is instructive to
find out the result of these approximations, stationary exponent plus expansion about t0 = nT ,
for the harmonic oscillator. This will help us understand the nature of the approximations.

We consider an oscillator of unit mass and frequency ω, and we take the parameter b of
equation (2.3) to be

√
h̄/ω. Then the semiclassical propagator is easily shown to be

K(z, t) = e−iωt/2 exp
[|z|2(e−iωt − 1)

]
(6.16)
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which is also the exact result. The first exponential is the prefactor M−1/2
vv . This K is now

carried into equation (6.13), which becomes

G(z,E + iγ ) = 1

ih̄

∫ ∞

0
dt e−iωt/2 exp

(
i

h̄
(E + iγ )t + |z|2(e−iωt − 1)

)
. (6.17)

The whole of the second exponent is proportional to 1/h̄, when |z|2 is written in terms of
q and p. But there is no h̄ in the prefactor. Hence we are exactly in the situation mentioned at
the end of section 3.3. We look for the time t0 at which the second exponent is stationary. We
find that t0 is given by the condition

E + iγ = h̄ωe−iωt0 |z|2. (6.18)

The solutions of this equation can be written t0 = T0 + nT , where n is an integer, T = 2π/ω,
and T0 = T0(z, E) is pure imaginary (in the limit γ → 0). Thus there is an infinite number
of times at which the second exponent is stationary. For each t0 we expand this exponent to
second order in the vicinity and we perform the Gaussian integral. Then we add all these
results together to obtain the following G:

G(z,E + iγ ) = 1

ih̄

∞∑
n=1

e− 1
2 iω(nT +T0) exp

(
i

h̄
(E + iγ )(nT + T0) + |z|2(e−iωT0 − 1)

)

×
∫ ∞

0
dt exp

(
− 1

2
ω2|z|2(t − t0)

2e−iωT0

)

= 1

ih̄|z|

√
2π

ω2e−iωT0

∞∑
n=1

exp

[
2π in

h̄ω

(
E + iγ − h̄ω

2

)]

× exp

[
|z|2(e−iωT0 − 1) + i

(
E + iγ − 1

2
h̄ω

)
T0

h̄

]

= 1

ih̄|z|

√
2π

ω2e−iωT0

exp

[
2π i
h̄ω

(
E + iγ − 1

2 h̄ω

)]

1 − exp

[
2π i
h̄ω

(
E + iγ − 1

2 h̄ω

)]

× exp

[
|z|2(e−iωT0 − 1) + i

(
E + iγ − 1

2
h̄ω

)
T0

h̄

]
. (6.19)

In the above we started the sum over n at n = 1. Why not n = 0? The answer is that it
does not make any difference, as long as we use this theory only to calculate the energies of the
stationary states and their Husimi distributions. This is discussed in the paragraph following
equation (6.34) in the next section.

The poles of (6.19) can now be found in the limit γ → 0. They are given by the condition
E =: Em = h̄ω(m + 1/2) with integer m. The residue for E = Em, which is the Husimi
distribution, is

ρHusimi(z) = 1√
2π |z|2 e−iωT0

exp
[|z|2(e−iωT0 − 1) + imωT0

]
. (6.20)

Using (6.18) for T0 with E = Em and γ = 0, we obtain e−iωT0 |z|2 = m + 1/2 and (6.20)
becomes

ρHusimi(z) = 1√
2π(m + 1/2)

em+1/2−|z|2
( |z|2
m + 1/2

)m
. (6.21)

This result should be compared with the exact Husimi distribution

ρexact
Husimi(z) = 1

m!
e−|z|2 |z|2m (6.22)
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which is an annulus with its maximum at |z|2 = m. The mean value of |z|2 is m + 1 and the
logarithmic second derivative at the maximum is −1/m, giving a width of order

√
m. Both

formulas, exact and semiclassical, have the same z-dependence, namely, |z|2me−|z|2 . They
differ only in the coefficient. Obviously (6.22) is correctly normalized and (6.21) is not. The
difference is small, however. Using Stirling’s approximation for m!, we can write (6.21) as

ρHusimi(z) = 1

m!
e−|z|2 |z|2m

(
1 +

1

2m + 1

)m+1/2

e−1/2. (6.23)

For large m the quantity to the left of e−1/2 becomes e+1/2. Thus the semiclassical Husimi
becomes exact in the limit of large quantum numbers, and it is a valid approximation for all
phase-space points z.

For general Hamiltonians we shall not be able to do such a complete calculation. As we
shall see, the stationary time t0 is given by an implicit equation that cannot be generally solved.
The best thing to do to get an explicit result will be to expand t0 about the classical period nT .
Now we can check this additional approximation explicitly for the harmonic oscillator. Let us
pretend that equation (6.18) cannot be solved exactly for t0(E, z) and, instead, let us solve it
by expanding t0 about nT . So we write t0 = nT + T0 and consider only small values of T0.
Taking γ = 0 in equation (6.18) and expanding for small T0, we find

T0 ≈ h̄ω|z|2 − E

ih̄ω2|z|2 . (6.24)

Since T0 is independent of n we may go through the same steps as in equation (6.19). The
position of the poles does not depend on T0 and it is not affected by this approximation. The
Husimi distribution, however, does depend on T0 explicitly. For E = Em we get

T0 ≈ |z|2 −m− 1/2

iω|z|2 . (6.25)

T0 is small whenever |z|2 is close tom+ 1/2, which is the classical orbit with quantized energy
Em. Therefore, for each eigenstate, there is a phase-space region centred on this classical orbit
where the approximation is justified. This region should encompass most of the distribution
whenm is sufficiently large. Expanding equation (6.20) to second order in T0 and using (6.25)
we obtain

ρHusimi(z) ≈ 1√
2π |z| exp

[
− (|z|

2 −m− 1/2)2

2|z|2
]
. (6.26)

The maximum of this annulus comes at |z|2 = m + 1/8m + · · ·, which agrees with the exact
maximum for the first two orders of 1/m. The logarithmic second derivative also agrees for
the leading order. Therefore, the result of expanding the stationary time about the classical
period is to restrict the region of validity of the Husimi distribution to not too small quantum
numbers.

6.3. The Green function for general Hamiltonians

We now return to our general calculation, equation (6.13). In what follows we shall omit the
subscript ν. It will be replaced shortly by the multiple traversals around periodic trajectories.
The stationary exponent condition is given by φ′(t0) = 0, with φ(t) given by (6.15). It is

φ′(t0) = i

h̄

(
∂S

∂t

∣∣∣∣
t0

+
∂I
∂t

∣∣∣∣
t0

+ E + iγ

)
≡ 0. (6.27)
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The third equation (2.60) gives

∂S/∂t |t=t0 = −E(z, t0). (6.28)

This script E is the energy of the classical trajectory, not to be confused with E, which
is the energy variable in the Green function. For the first time derivative of I, defined in
equation (2.65), we have

∂I/∂t |t=t0 = 1

2

∂2H
∂u∂v

∣∣∣∣
t=t0

+
1

2

∫ t0

0

[
∂3H
∂2z∂z�

∂z

∂t

∣∣∣∣
t=t0

+
∂3H
∂z∂2z�

∂z�

∂t

∣∣∣∣
t=t0

]
dt ′. (6.29)

The terms under the integral involve third derivatives of H with respect to the phase-space
variables. We have consistently neglected such terms up to now and we must do so here again.
Hence we use only the first term, to which we give a simpler name

∂I/∂t |t=t0 ≈ 1

2

∂2H
∂z∂z�

=: ε(z, t0). (6.30)

The stationary condition is then written

E + iγ − E(z, t0) + ε(z, t0) = 0. (6.31)

Besides the contributions from the stationary points t = t0, there is also a contribution to G
coming from the vicinity of t = 0. As we shall see later, this contribution is not needed in
the calculation of the energy levels and the Husimi distributions, hence we shall ignore it. We
have also discarded it in the previous calculation for the harmonic oscillator.

In order to perform the time integral, we need to expand φ(t) around t0 to second order.
The first derivative at t0 is zero by definition. The second derivative is

φ′′(t0) = i

h̄

(
∂2S

∂t2

∣∣∣∣
t0

+
∂2I
∂t2

∣∣∣∣
t0

)
. (6.32)

For the second derivative of S we introduce the notation

α(z, t0) := ∂2S/∂t2
∣∣
t=t0 . (6.33)

From (6.29) we see that ∂2I/∂t2 involves only third- or higher-order derivatives of H and
therefore we can discard it completely.

We can now calculate G(z,E + iγ ). The effect of our expansion is that we have applied
once again the Gaussian approximation to the integral in equation (6.13), which is then
straightforward:

G(z,E + iγ ) = 1

ih̄

1√
Mvv(t0)

exp

{
i

h̄

[
S(z, t0) + I(z, t0) + ih̄|z|2 + (E + iγ )t0

]}

×
∫ ∞

0
exp

(
iα(z, t0)

2h̄
(t − t0)

2

)
dt

= 1

ih̄

√
2π ih̄

Mvv(t0)α(z, t0)
exp

{
i

h̄

[
S(z, t0) + I(z, t0) + ih̄|z|2 + (E + iγ )t0

]}
.

(6.34)

Actually this integral is a sum of Gaussians, because there are many solutions to equation (6.31),
as we have seen with the harmonic oscillator. As we mention later, α has a positive imaginary
part for t0 ≈ nT ; this follows from equation (6.53), plus the fact that S is real. It means that
the integral is strongly convergent for very large times, both positive and negative. However,
the integral in equation (6.13) does not extend over the interval −∞ < t < +∞, but over
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0 < t < +∞: is there a problem at t = 0? Yes, there might very well be a problem, both
for t = 0 and for t0 ≈ nT and small n. There is no problem for large n, since nT becomes
arbitrarily large. We intend to use this Green function only for the semiclassical calculation of
the energy levels and the Husimi distributions. These are determined by the poles of the Green
function and by their residues, respectively, and the poles and residues are determined solely
by the behaviour of the integrand of (6.13) at very large times. Hence we are safe in ignoring
possible mistakes at small t . In particular, the contributions from trajectories with t ≈ 0 give
rise to the Thomas–Fermi approximation, which we shall not consider here. Therefore it is
alright for our purpose to calculate the integral as if it extended from −∞ to +∞.

We shall now transform the prefactor by finding a convenient way of expressing α(z, t0).
In the many differentiations which follow, it is important to remember that the independent
variables in S are u′, v′′ and t . One should do the differentiations first, and only afterwards
may one compute the functions for the stationary orbit by replacing t by t0, u′ by z and v′′

by z∗. First we write two different ways of expressing ∂S/∂t

∂S/∂t = −H[u′, v′(u′, v′′, t)
]

∂S/∂t = −H[u′′(u′, v′′, t), v′′]. (6.35)

This leads to two different ways of writing α

α(z, t0) = ∂2S

∂t2

∣∣∣∣
t=t0

= −∂H
∂v′

∂v′

∂t

∣∣∣∣
t=t0

(6.36)

α(z, t0) = ∂2S

∂t2

∣∣∣∣
t=t0

= − ∂H
∂u′′

∂u′′

∂t

∣∣∣∣
t=t0

. (6.37)

In equation (6.36) we use Hamilton’s equations (2.36) to express ∂H/∂v′ and the second
equation (2.60) to express ∂v′/∂t . In equation (6.37) we do similar transformations with the
other variables. This gives the two forms

α(z, t0) = − ih̄u̇′ i

h̄

∂2S

∂u′∂t

∣∣∣∣
t=t0

= ih̄v̇′′ i

h̄

∂2S

∂v′′∂t

∣∣∣∣
t=t0

. (6.38)

Referring now to equation (6.35), using Hamilton’s equations once again, and using the first
and second equations (2.60) once again, we transform the second derivatives of S as follows:

∂2S

∂u′∂t
= −∂H(u

′′, v′′)
∂u′′

∂u′′

∂u′ = ih̄v̇′′ i

h̄

∂2S

∂u′∂v′′ (6.39)

∂2S

∂v′′∂t
= −∂H(u

′, v′)
∂v′

∂v′

∂v′′ = −ih̄u̇′ i

h̄

∂2S

∂u′∂v′′ . (6.40)

After cancellation of the h̄, both forms of the equations give the same result for α, namely

α(z, t0) = − u̇′v̇′′ ∂2S

∂u′∂v′′

∣∣∣∣
t=t0

= − u̇′v̇′′Auv
∣∣
t=t0 = ih̄u̇′v̇′′/Mvv(z, t0). (6.41)

Amazingly, the denominator under the square root in equation (6.34) has become simply
ih̄u̇′v̇′′, where the velocities are computed at the complex trajectory with t = t0. One should,
however, be careful about the phase of theMvv under the square root, as already mentioned in
sections 2 and 4. We shall discuss it in a moment.

In spite of this great simplification it is still hard to find the poles of G(z,E) by looking
at equation (6.34). This is because the stationary time t0 is given implicitly by equation (6.31)
and it refers to complex trajectories. According to our discussion following equation (6.15),
large contributions toG(z,E + iγ ) are expected for t0 close to nT , where T is the period of the
real orbit through z. Therefore, as we did for the harmonic oscillator, we proceed to expand
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equation (6.34) about t0 = nT , summing over n. We write t0 = nT + T0, substitute it into
equation (6.31), and expand the terms to find T0:

E + iγ − E(z, nT ) + ε(z, nT )− ∂E(z, t)/∂t |t=nT T0 + ∂ε(z, t)/∂t |t=nT T0 ≈ 0. (6.42)

Equation (6.30) shows again that ∂ε(z, t)/∂t involves only third or higher derivatives of H and
therefore we discard it. For real periodic orbits, the functions E and ε depend only on z and
we have

∂E(z, t)/∂t |t=nT = − ∂2S/∂t2
∣∣
t=nT = −α(z, nT ) =: −α(n)(z). (6.43)

Equation (6.42) can then be written(
E + iγ − E(z, nT ) + ε(z, nT )

)
+ α(n)(z)T0 ≈ 0. (6.44)

Our basic assumption is that T0 � nT for each solution t0 labelled by n. Hence the sum of
the terms inside the parenthesis above should be small. Solving equation (6.44) for T0 gives

T0 = −E + iγ − E(z) + ε(z)

α(n)(z)
. (6.45)

In the limit γ → 0, the points z satisfying E(z)− ε(z) = E have t0(z, E) = nT (z). When we
expand the Green function about t0 = nT , we are restricting the validity to the neighbourhood
of these points. Notice that, in contrast to the case of the harmonic oscillator, T0 does depend on
n and the sum over multiple traversals has to be performed after the expansion about t0 = nT .

We are now in a position to discuss the pre-factor which, according to equation (6.41), is
given (up to its phase) by the square root of u̇′(t0) v̇′′(t0). Its main contribution comes from
periodic orbits and, once again, we have to expand each of these velocities for t0 close to nT .
Using Hamilton’s equation for u̇′(t0) we get

u̇′(t0) = − i

h̄

∂H
∂v′

∣∣∣∣
t=t0

≈ u̇′(nT )− i

h̄

∂2H
∂v′2

∂v′

∂t

∣∣∣∣
t=nT

T0

= ż− i

h̄

∂2H
∂v′2

(
i

h̄

∂2S

∂t∂u′

∣∣∣∣
t=nT

)
T0

= ż +
i

h̄
Hvv ż

∗ T0/M
n
vv

= ż +
1

h̄2ż
Hvv T0 α

(n) (6.46)

where we have used equations (2.60), (6.39), (2.71) and (6.41). Doing a similar calculation
for v̇′′(t0) we find

u̇′(t0) v̇′′(t0) ≈ |ż|2(1 + O(α(n)T0)
)
. (6.47)

Now we want to argue that the terms of order α(n)T0 are small and that, in fact, the prefactor
can be simply calculated at the periodic orbit itself, so that (6.47) is just |ż|2. We gave a similar
argument in section 3.3, where the neglected terms were of order h̄ compared to the terms kept.
Here, however, their order is

√
h̄, not as small, but still small! We shall verify this a posteriori

once we have calculated the Husimi distribution. We shall find later that the Husimi attains
significant magnitudes only when E − E(z) + ε(z), which is the same as α(n)T0 by (6.45), is
of order

√
h̄.

To calculate the phase of the prefactor, or the tangent matrix, for a real periodic orbit,
one must follow it when moving around the orbit. The harmonic oscillator provides again a
simple illustration of what happens: in this case the solution of Hamilton’s equations (2.36)
with initial conditions u(0) = u′, v(0) = v′ is simply u(t ′) = u′e−iωt ′ and v(t ′) = v′eiωt ′ . The
tangent matrix is diagonal and Mvv = eiωt . The pre-factor of the time-dependent propagator



7274 M Baranger et al

is, therefore, e−iωt/2 (see equation (6.16)). When this is calculated at a periodic orbit, we see
that after one period, for t = T = 2π/ω,Mvv has rotated by 2π and the phase of the pre-factor
is e−iπ = −1. The phase for t = 2nπ/ω is just e−inπ .

This phase of −nπ is not particular to the harmonic potential; it is a consequence of
the fact that the motion is periodic in two-dimensional phase space. To see this, consider a
periodic orbit of energy E and period T in a generic system. The tangent matrix propagates
small displacements about this orbit. Any such small displacement is going to point to a
nearby periodic orbit with energy E + δE and period T + δT . As we move once around the
orbit the displacement vector stays hooked to these two reference orbits and, therefore, has to
rotate once as well. The total rotation is not exactly 2π , since the period of the nearby orbit is
slightly different from T . The angle of rotation is actually 2π + θ , where the θ piece follows
from equation (6.12) for Mvv . When Mvv is raised to the −1/2 power in the prefactor, this
2π contributes a phase of −π to the propagator, just as in the harmonic oscillator. Then there
is the angle θ , which is a function of n and which remains in the prefactor. Equation (6.12)
shows that θ never gets very large; for all n it is bounded either by 0 and π/2, or by −π/2
and 0, depending on the signs. However, by virtue of equation (6.41) the phase θ disappears
completely from the calculation and the only relevant phase from the square root is −nπ . From
now on we shall take this phase out of the prefactor and include it explicitly in the exponential.
Replacing u̇′v̇′′ in equation (6.41) by |ż|2 we get

G(z,E + iγ ) =
√

2π

ih̄|ż| exp

{
i

h̄

[
S(z, t0) + I(z, t0) + ih̄|z|2 + (E + iγ )t0 − nπh̄

]}
. (6.48)

Next we expand S and I around t0 = nT . Since the zero-order orbit is the real periodic
one, we may write, using equation (2.54)

S(z�, z, nT ) = nS(E(z))− nE(z) T − ih̄|z|2. (6.49)

Here E(z) is the energy of the real periodic orbit going through z. It should not be confused
with E, the quantal energy variable. S(E(z)) is the ‘reduced action’

S(E(z)) = ih̄

2

∫ T

0
(u̇v − v̇u) dt ′ (6.50)

which, for the real periodic orbit, is a function only of E , or of the period T , themselves
functions of z. The third equation (2.60) gives

∂S/∂t |t=nT = ∂S/∂t |t=T = −E(z). (6.51)

Either E or T can be used as the independent variable for the periodic trajectory. The second
derivative of S becomes (see equations (6.33) and (6.41))

∂2S/∂t2
∣∣
t=nT = α(n)(z) = ih̄|ż|2/M(n)

vv . (6.52)

Using equation (6.12) and dS/dE = T , we find

1

α(n)
= M(n)

vv

ih̄|ż|2 = 1

ih̄|ż|2 − n

|ż|2
dT

dE u̇
′v̇′′ = 1

ih̄|ż|2 − n
d2S
dE2

. (6.53)

From the definition (2.65), we have I(z�, z, nT ) = nI(z�, z, T ). Once again, for the periodic
orbit, I depends only on the classical energy or on the period and we can call it I(E(z)). For
the first time derivative we have by (6.30)

∂I/∂t |t=nT ≈ 1

2

∂2H
∂z∂z�

= ε(z). (6.54)
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Calling ψ(E, z) the exponent in equation (6.48) and using equations (6.49)–(6.54) we get, up
to second order in T0,

ψ(E, z) ≈ i

h̄
n

[
S(E(z)) + I(E(z))− πh̄ +

dS
dE
(
E − E(z) + iγ

)]

+
i

h̄

[(
E − E(z) + ε(z) + iγ

)
T0 +

α(n)

2
T 2

0

]
. (6.55)

Next we add and subtract ε dS/dE inside the brackets on the first line and use equation (6.45)
for T0 in the second line. The term in T 2

0 becomes minus one half of the term in T0. When we
add these two terms we get

ψ(E, z) = i

h̄
n

[
S(E(z)) + I(E(z))− πh̄ +

dS
dE
(
E − E(z) + ε(z) + iγ

)− ε(z)
dS
dE

]

− i

2h̄α(n)
(
E − E(z) + ε(z) + iγ

)2
. (6.56)

Finally we use equation (6.53) for α(n):

ψ(E, z) = i

h̄
n

[
S(E(z)) + I(E(z))− πh̄ +

dS
dE
(
E − E(z) + ε(z) + iγ

)− ε(z)
dS
dE

+
1

2

d2S
dE2

(
E − E(z) + ε(z) + iγ

)2]− 1

2h̄2|ż|2
(
E − E(z) + ε(z) + iγ

)2
. (6.57)

The first, fourth and sixth terms in (6.57) are the Taylor expansion of the function
S(E + iγ + ε(z)) to second order around E . This is an acceptable approximation as long
as E − E(z) + ε(z) + iγ , i.e. T0α

(n), is small. Since ε is of order h̄ we can further write
S(E+iγ +ε(z)) ≈ S(E+iγ )+T (E+iγ )ε(z), neglecting terms of order h̄2. Then equation (6.57)
can be written

ψ(E, z) ≈ i

h̄
n
{S(E + iγ

)
+ I(E) + ε(z)[T (E + iγ )− T (E)] − πh̄

}
− 1

2h̄2|ż|2
(
E − E(z) + ε(z) + iγ

)2
. (6.58)

Since I and ε are themselves of order h̄, we may also replace E by E + iγ in the argument
of both I(E) and T (E), the error in doing so being of order T0α

(n)h̄. This simplifies ψ(E, z)
even more and we get just

ψ(E, z) ≈ i

h̄
n
{S(E + iγ

)
+ I(E + iγ

)− πh̄
}− 1

2h̄2|ż|2
(
E − E(z) + ε(z) + iγ

)2
. (6.59)

Inserting this as the exponent in equation (6.48) and summing over n we obtain

G(z,E + iγ ) = − i

h̄

√
2π

|ż|
∞∑
n=1

exp

{
i

h̄
n
[S(E + iγ

)
+ I(E + iγ

)− πh̄
]

−
(
E − E(z) + ε(z) + iγ

)2
2h̄2|ż|2

}
. (6.60)

We may now perform the sum over all multiple traversals. The result is

G(z,E + iγ ) = − i

h̄

√
2π

|ż|
ei(S+I−πh̄)/h̄

1 − ei(S+I−πh̄)/h̄ exp

{
−
(
E − E(z) + ε(z) + iγ

)2
2h̄2|ż|2

}
(6.61)

where S and I are taken at E + iγ .
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6.4. Semiclassical energy levels and Husimi functions

Since the poles of the exact G are the stationary state energies, and their residues are the
corresponding Husimi distributions, we are now in a position to calculate semiclassical
approximations to these quantities. We let γ → 0. If γ �= 0 the poles are displaced by
iγ . Poles occur whenever (S + I − πh̄)/h̄ = 2mπ . This is the quantization rule, which can
be rewritten

(S + I)(Em) = (m + 1/2)h. (6.62)

This is what replaces the usual WKB formula, which can be obtained from the coordinate
Green function. One should not forget that S here is not the same as the S in the WKB
formula, and that the latter does not contain any I, of course. One should also realize that the
+1/2 is obtained in very different ways in the two cases. In the usual WKB, the semiclassical
approximation diverges at the turning points, and one must use some delicate arguments around
this problem to derive a connection formula. Here, on the other hand, there is no divergence
and we derived the +1/2 with a simple continuity argument.

The residue of

− i

h̄

ei(S+I−πh̄)/h̄

1 − ei(S+I−πh̄)/h̄ (6.63)

at E = Em is
1

d(S + I)/dE = 1

T (Em) + (dI/dE)|Em
. (6.64)

Hence the residue of G, which is the Husimi distribution for the level Em, is

ρHusimi(z) =
√

2π

|ż| [T (Em) + (dI/dE)|Em
] exp

{
−(Em − E(z) + ε(z)

)2
2h̄2|ż|2

}
. (6.65)

It is centred close to the classical trajectory with the quantized energy. Both its amplitude and
its width are modulated by the phase-space velocity |ż|. The width is given by the Gaussian
factor. In terms of either variable E or z, it is of order

√
h̄. This follows from the fact that

h̄|z|2 is of order unity (see equations (2.2) and (2.3)). Therefore, our decision not to expand
the pre-factor (see equation (6.47)), and the approximation after equation (6.58), amount to
discarding corrections proportional to

√
h̄ in the Green function. These are not as small as the

other corrections to the semiclassical approximation, which were of order h̄ (see section 3.3),
but they are still small and vanish in the semiclassical limit.

For the second type of path integral discussed in section 3, the quantization rule can be
obtained by changing I to −I in the time-dependent propagator and carrying this change all
the way through the Green function treatment. The quantization rule and Husimi functions
become then

(S − I)(Em) = (m + 1/2)h (6.66)

and

ρ
(2)
Husimi(z) =

√
2π

|ż| [T (Em)− (dI/dE)|Em
] exp

{
−(Em − E(z)− ε(z)

)2
2h̄2|ż|2

}
(6.67)

where all quantities are computed with H2, instead of H1 ≡ H.
According to our discussion in section 3, one could also use the Weyl Hamiltonian and

drop I. In this case there would be no ε(z) coming from ∂I/∂t . The quantization rule in this
case becomes

S(Em) = (m + 1/2)h (6.68)
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which is exactly the WKB rule, and the Husimi functions are

ρ
Weyl
Husimi(z) =

√
2π

|ż| T (Em) exp

{
−(Em − E(z)

)2
2h̄2|ż|2

}
. (6.69)

This expression is similar to a formula suggested previously by Kurchan et al (see
equations (5.21) and (5.22) in [Kur89]; see also [Car92] for a numerical application).

The semiclassical energy levels will be slightly different for the three prescriptions,
equations (6.62), (6.66) and (6.68). In fact it can be shown, using arguments similar to those in
appendix C, that they all coincide up to first order in h̄. This is in accordance with the fact that
corrections to the WKB energies are of order h̄2 [Vor77]. Our quantization rule (6.62) does
include some corrections of order h̄2, but not all of them. These corrections might improve the
calculation of the energy levels with respect to WKB, especially for low-lying energy levels.
Numerical work is currently being done to explore the possibilities. In this we still have one big
freedom, the choice of b, the width of the coherent state, for each energy level. For the ground
state, the variational principle tells us that H is always larger than or equal to the true energy.
Therefore we must choose b so as to minimize the energy. For the other states, however, no
such direct rule exists and other prescriptions leading to an optimal b have to be devised.

For the harmonic oscillator, all three formulae give the exact resultEm = (m+1/2)h̄ω and
the same Husimi distributions, independent of what b is chosen for the coherent state width.
For the case of b = √

h̄/ω all three semiclassical formulae give

ρm(z) = 1√
2π |z| exp

[
− (|z|

2 −m− 1/2)2

2|z|2
]

(6.70)

which is the result we obtained in section 6.2.

7. Conclusion

One inescapable conclusion is that there is more than one semiclassical approximation to
quantum mechanics in phase space, even when one restricts oneself to the coherent state
representation. It has often been said that all semiclassical approximations are identical in
the end, that they always consist in expanding some exponent to second order in the vicinity
of the classical trajectory and then doing a collection of Gaussian integrals, that all such
expansions should be the same except for the choice of independent variables and therefore
that the Gaussian integrals should always produce the same result. This argument is wrong, the
basic reason being that the classical trajectory about which the expansion takes place differs
from method to method, because the classical Hamiltonian differs from method to method.
The confusion in the literature is in part due to this, but not entirely. People have ignored terms
that looked small or unfamiliar, even when these were clearly part of the approximation they
were using. They have done complex integrals as if these were real. They have ignored phases.
They have been inconsistent with the Hamiltonian they used, often changing it in midstream.

Although the number of different, equally valid approximations is actually infinite, it
is convenient to focus on only three of them, which have been discussed at some length in
section 3. They correspond to three different choices for the classical Hamiltonian associated
with a given quantal Hamiltonian. They are the Weyl Hamiltonian HW, the smoothed
Hamiltonian H1 ≡ H and the antismoothed Hamiltonian H2. It is essential to realize that,
in all semiclassical approximations, the smoothed Hamiltonian is always associated with an
exponential term containing a special correction to the action which we have called I. The
temptation to omit this unfamiliar term is great, but it should be resisted, as without it one
cannot get a correct quantization rule, for instance. Similarly, the antismoothed Hamiltonian



7278 M Baranger et al

is always associated with −I. The Weyl Hamiltonian does not come with such a correction
term, which in a way makes it the simplest of the three. On the other hand, there is no simple
approximation involving coherent states which yields the Weyl Hamiltonian. It occurs in some
of the other methods, for instance the Wigner–Weyl method mentioned in section 1, and also
the Heller method of section 4.3. The advantage of the smoothed Hamiltonian is that, since it
is smoothed, approximations based on power series expansions are especially good for it. This
is the Hamiltonian that we have used in most of our work. The antismoothed Hamiltonian,
lacking both of the characteristics that make the other two desirable, does not seem to have
been used in practice by anyone.

The first test cases for a semiclassical approximation should be the free particle and the
harmonic oscillator. All three of the above approximations become exact then. Once again,
this is so only when the I term is appropriately included. Without I, both H1 and H2 are
wrong; only HW remains. Beyond these two systems, the question of which of the three
approximations gives better results has no single answer; it depends very much on the specific
quantity calculated. We are planning to address this point in another paper. It is true that the
three versions differ from each other only by terms of order h̄, but a difference of this order can
be essential in the quantization rule, and it may also be significant for the long-time behaviour.

We shall now summarize our other results. They can be grouped in three categories:
coherent-state propagator, IVR and energy Green function. We gave in section 2 a very
complete derivation of the semiclassical coherent-state propagator in one dimension, smoothed
Hamiltonian version. This is equation (2.63) or (2.72). Then in section 3 we compared it with
several other semiclassical approximations. In particular, we obtained an explicit expression
for the antismoothed Hamiltonian version. We believe both of these results to be new.

In an attempt to provide a rigorous derivation of the well known HK formula, we derived
in section 4 our own new IVR. Like HK, we set out to calculate semiclassically the mixed
propagator 〈x|K(t)|z′〉 in terms of real trajectories starting from q(0) = q ′, p(0) = p′. Our
result, equation (4.29), is very different from HK’s. Also in section 4, we considered Heller’s
old idea for an IVR, which is not based on the coherent state formalism, and we derived an
explicit expression for it, valid for any smooth Hamiltonian function of q and p. We found
that Heller’s IVR and ours are very similar, the difference being that Heller’s has the Weyl
Hamiltonian and no I term. We returned to the HK IVR in section 5 and pointed out mistakes
made in its derivation. The nonconservation of the HK norm is a fatal flaw, we think. The HK
expression does not follow from the semiclassical limit of the coherent-state propagator, but it
can be derived from an ansatz where one assumes a fixed width for the propagated wavepacket
and one demands that the resulting propagator recover that of Van Vleck when transformed to
the representation 〈x|K(t)|x ′〉. We show, however, that the applicability of such a formula is
very limited and should fail for long times and/or for chaotic systems.

Finally, in section 6 we derived the corresponding semiclassical approximations for the
energy Green function in the coherent-state representation. For each of the approximations,
we used this Green function to find a quantization rule, which yields the energy levels in terms
of classical quantities. We also used it to get a semiclassical approximation to the Husimi
distribution for each level.

There are at least two ways that one might go farther in this field. One needs to carry out
numerical comparisons between the various semiclassical approximations and determine the
conditions under which one or the other might be preferable. We have made a small start in this
direction, but we leave the results for a future publication. One needs also to extend this work
to two dimensions, which will allow applications to more interesting problems, in particular
problems with partially chaotic classical mechanics. There too we have made a significant
start; it promises to be a rather complicated field and we shall say no more about it here.
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Appendix A. Calculating the prefactor by the determinantal method

In this appendix we present an alternative way of performing the multiple Gaussian integral
which occurs in the calculation of the semiclassical propagator. In section 2.3, we started by
doing the integrals one by one, and then we derived a recursion relation between successive
integrals. Here we start with the determinant of the quadratic form, and we derive recursion
relations between determinants of successively higher orders. This method is very general and
can be applied for any number of dimensions. We use it here again for an integral in section 3.1
concerning the semiclassical approximation of a different kind of coherent-state propagator.

We start with equation (2.23), where we had to perform a 2(N−1)-dimensional Gaussian
integral of the form∫

exp

{
−x

TMx

2

}
dLx = (2π)L/2√

detM
(A.1)

where M is a complex, positive definite L× L matrix. All the work comes in calculating the
‘prefactor’, or the square root of the determinant. We rewrite equation (2.23) as

K1(z
′′, t; z′, 0) = ef (z

�,z)

∫ { N−1∏
j=1

dη�j dηj

2π i

}
eζ . (A.2)

The boundary conditions (2.19) ensure that j varies only from 1 to N − 1. We have already
written ζ in equation (3.12). Here we define the abbreviations

Aj = i

h̄

∂2H1(z
�
j+1, zj )

∂z2
j

Bj = i

h̄

∂2H1(z
�
j , zj−1)

∂z�2j
Cj = i

h̄

∂2H1(z
�
j+1, zj )

∂z�j+1∂zj
(A.3)

and we write

−2ζ = 2
N−1∑
j=1

ηjη
�
j +

N−1∑
j=1

τAjη
2
j + 2

N−2∑
j=1

(τ Cj − 1)η�j+1ηj +
N−1∑
j=1

τBjη
�2
j . (A.4)

The subscript 1 in equations (A.2) and (A.3) is the notation of section 3 and means that the
first form of path integral is being used. We shall calculate K2(z

′′, t; z′, 0) as well later in this
appendix. We use η (without subscript!) to denote a double-sized vector containing all the
ηj as well as their complex conjugates in the order ηN−1, η

�
N−1, ηN−2, η

�
N−2, . . . , η1, η

�
1. Then

equation (A.4) can be rewritten

ζ = −η
TG(N−1)η

2
(A.5)
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where

G(N−1) :=




τAN−1 1 0 0 0 0 · · ·
1 τBN−1 τCN−2 − 1 0 0 0 · · ·
0 τCN−2 − 1 τAN−2 1 0 0 · · ·
0 0 1 τBN−2 τCN−3 − 1 0 · · ·
0 0 0 τCN−3 − 1 τAN−3 1 · · ·
0 0 0 0 1 τBN−3 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .




(A.6)

is a tridiagonal band matrix whose dimensionality is twice the value of its superscript.
The integration formula (A.1) cannot be applied directly to (A.2), because in the latter

the variables and the paths are complex. However, this is a problem that we have already
considered and solved at the beginning of section 2.3. If we compare carefully equation (2.25)
with (2.24), we find in the complex case that, for each pair of variables, we must introduce an
additional minus sign in front of the determinant in the square root. It is also clear that the 2π
will cancel out. Hence the correct formula is

K1(z
′′, t; z′, 0) = ef (z

�,z) 1√
(−1)N−1detG(N−1)

. (A.7)

Then the calculation of the determinant proceeds in the following way. First, the
determinant is expanded with respect to its first column

detG(N−1) = τAN−1

×

∣∣∣∣∣∣∣∣∣∣∣∣

τBN−1 τCN−2 − 1 0 0 0 · · ·
τCN−2 − 1 τAN−2 1 0 0 · · ·

0 1 τBN−2 τCN−3 − 1 0 · · ·
0 0 τCN−3 − 1 τAN−3 1 · · ·
0 0 0 1 τBN−3 · · ·
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 · · ·
τCN−2 − 1 τAN−2 1 0 0 · · ·

0 1 τBN−2 τCN−3 − 1 0 · · ·
0 0 τCN−3 − 1 τAN−3 1 · · ·
0 0 0 1 τBN−3 · · ·
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣
.

(A.8)

The second determinant can easily be expanded with respect to its first line: it is simply
detG(N−2). The first determinant, on the other hand, is that of a different quadratic form
which we call F (N−1). Thus we have the recursion relation

detG(N−1) = τAN−1 det F (N−1) − detG(N−2). (A.9)

Now we can expand detF (N−1) analogously, which leads to a second recursion relation

det F (N−1) = τBN−1 detG(N−2) − (τCN−2 − 1)2 det F (N−2)

= τBN−1 detG(N−2) + 2τCN−2 det F (N−2) − det F (N−2) + O(τ 2). (A.10)

Since eventually we shall go to the limit τ → 0, N → ∞, we may drop the terms of order
τ 2. We can get rid of many minus signs by making the definitions

gN−1 = (−)N−1 detG(N−1) fN−1 = (−)N−1 det F (N−1). (A.11)
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Equations (A.9) and (A.10) can now be rewritten as

gN−1 = gN−2 + τAN−1fN−1

fN−1 = fN−2 − τBN−1gN−2 − 2τCN−2fN−2.
(A.12)

In the continuous-time limit, these recursion relations turn into two first-order differential
equations

ġ = Af ḟ = −Bg − 2Cf. (A.13)

By letting τ go to 0 in the determinants themselves, one sees easily that the initial conditions
are

g(0) = 1 f (0) = 0. (A.14)

One way to solve the differential equations is to introduce the functions

g̃ = g exp

[ ∫ t

0
C(t ′) dt ′

]
f̃ = f exp

[ ∫ t

0
C(t ′) dt ′

]
. (A.15)

Equations (A.13) become now

˙̃g = Af̃ + Cg̃ ˙̃
f = −Bg̃ − Cf̃ (A.16)

with initial conditions g̃ = 1 and f̃ = 0. Replacing the abbreviations A,B,C by their
definitions in equation (A.3), we see that (A.16) is formally identical to the differential
equations (2.49) if we let g̃ be δv and f̃ be δu. The initial values are δu(0) ≡ δu′ = 0
and δv(0) ≡ δv′ = 1.

We need to know g(t), which is the quantity under the square root in (A.7); we do not
need f (t). Since g̃(t) = δv′′, we can use equation (2.62) with δv′ = 1 to write

g(t) = δv′′ exp

(
−
∫ t

0
C(t ′) dt ′

)
=
(

i

h̄

∂2S

∂u′∂v′′

)−1

exp

(
−
∫ t

0
C(t ′) dt ′

)
. (A.17)

Substituting back into equation (A.7) and replacing C by its definition gives

K1(z
′′, t; z′, 0) = ef (z

�,z)

√
i

h̄

∂2S

∂u′∂v′′ exp

{
i

2h̄

∫ t

0
dt ′
∂2H1

∂u∂v

}
. (A.18)

Finally, by calculating exp{f (z�, z)} in the same way as in section 2 (see equation (2.43) and
section 2.5), we obtain a result identical to equation (2.63):

K1(z
′′, t; z′, 0) =

√
i

h̄

∂2S

∂u′∂v′′ exp

{
i

2h̄

∫ t

0
dt ′
∂2H1

∂u∂v

}

× exp

{
i

h̄
S(v′′, u′, t)− 1

2

(|v′′|2 + |u′|2)} . (A.19)

Let us now repeat this calculation for Klauder and Skagerstam’s ‘second form of the path
integral’ discussed in section 3.1. We follow very closely what we just did for K1, with small
but important differences. According to equation (3.11), the quadratic form for K2 is

−2ζ = 2
N−1∑
j=1

η�jηj − 2
N−2∑
j=1

η�j+1ηj +
N−1∑
j=1

τAjη
2
j +

N−1∑
j=1

τBjη
�2
j + 2

N−1∑
j=1

τCjη
�
jηj (A.20)

with the (different) definitions

Aj = i

h̄

∂2H2(z
�
j , zj )

∂z2
j

Bj = i

h̄

∂2H2(z
�
j , zj )

∂z�2j
Cj = i

h̄

∂2H2(z
�
j , zj )

∂z�j ∂zj
. (A.21)
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The matrix GN−1 becomes

G(N−1) :=




τAN−1 1 + τCN−1 0 0 0 0 · · ·
1 + τCN−1 τBN−1 −1 0 0 0 · · ·

0 −1 τAN−2 1 + τCN−2 0 0 · · ·
0 0 1 + τCN−2 τBN−2 −1 0 · · ·
0 0 0 −1 τAN−3 1 + τCN−3 · · ·
0 0 0 0 1 + τCN−3 τBN−3 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .



. (A.22)

Calling the matrix obtained by removing the first column and the first row ofGN−1 FN−1, and
expanding both GN−1 and FN−1 with respect to their first lines, we get

detG(N−1) = τAN−1 det F (N−1) − (1 + τCN−1)
2 detG(N−2)

det F (N−1) = τBN−1 detG(N−2) − det F (N−2).
(A.23)

Once again we get rid of signs with the help of definitions (A.11) and we take the limit
τ → 0, N → ∞ to get

ġ = Af + 2Cg ḟ = −Bg. (A.24)

Finally we define

g̃ = g exp

[
−
∫ t

0
C(t ′) dt ′

]
f̃ = f exp

[
−
∫ t

0
C(t ′) dt ′

]
. (A.25)

Note that, compared with the analogous definitions (A.15), the present ones have a minus sign!
We obtain again

˙̃g = Af̃ + Cg̃ ˙̃
f = −Bg̃ − Cf̃ (A.26)

which are the same equations as (A.16). Therefore the propagatorK2 is given again by (A.18)
except that, this time, there is a minus sign in front of the I term!

Appendix B. Proof of equation (3.27)

We start by rewriting equation (3.24) as

A =
∫ +∞

−∞
e

i
h̄
φ(x) dx (B.1)

where φ(x) := f (x) − ih̄ log g(x). To calculate A beyond the SPA we expand φ about its
stationary point X to fourth order:

φ(x) = φ(X) +
1

2!
φ(2)δx2 +

1

3!
φ(3)δx3 +

1

4!
φ(4)δx4 + · · · (B.2)

where δx = x −X and φ(n) = dnφ/dxn(X). Next we change the integration variable to

y =
√

|φ(2)|
2h̄

eiα/2−iπ/4 δx (B.3)

where α is the phase of φ(2). Substituting (B.2) and (B.3) into (B.1) we get

A ≈
√

2h̄

|φ(2)|eiπ/4−iα/2e
i
h̄
φ(X)

×
∫ +∞

−∞
exp

[
− y2 + i

φ(3)

6h̄

(
2h̄

|φ(2)|
)3/2

e3iπ/4−3iα/2y3 +
ih̄φ(4)

6|φ(2)|2 eiπ−2iαy4

]
dy
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≈
√

2h̄

|φ(2)|eiπ/4−iα/2e
i
h̄
φ(X)

×
∫ +∞

−∞
e−y2

[
1 +

ih̄φ(4)

6|φ(2)|2 eiπ−2iαy4 − h̄(φ(3))2

9|φ(2)|3 e3iπ/2−3iαy6

]
dy

=
√

2πh̄

|φ(2)|eiπ/4−iα/2e
i
h̄
φ(X)

[
1 − ih̄φ(4)

8|φ(2)|2 e−2iα +
5ih̄(φ(3))2

24|φ(2)|3 e−3iα

]

≈
√

2πh̄

|φ(2)|eiπ/4−iα/2

× exp

{
i

h̄

[
φ(X) +

h̄2

24|φ(2)|3
(
5e−3iα(φ(3))2 − 3e−2iα|φ(2)|φ(4))]}. (B.4)

We now proceed to expand the various terms above in powers of h̄ so as to compare this result
with SPA. The stationary point X of φ can be written in terms of the stationary point x0 of f
as

X = x0 + ih̄
g(1)

f (2)g(0)
+ O(h̄2) =: x0 + ih̄x1 + O(h̄2). (B.5)

Also

φ(X) = f (x0)− ih̄ log g(x0) + h̄2

[
x1g

(1)

g(0)
− f (2)x2

1

2

]
+ O(h̄3) (B.6)

φ(2) = f (2) + ih̄f (3)x1 − ih̄
g(2)g(0) − g(1)

2

g(0)
2 + O(h̄2) (B.7)

where g(n) = dng/dxn(x0) and f (n) = dnf/dxn(x0). From the last expression we find

|φ(2)|−1/2 = |f (2)|−1/2 (1 + O(h̄2)) (B.8)

and

α = π

2
(s − 1) +

h̄f (3)x1

f (2)
− h̄

g(2)g(0) − g(1)
2

g(0)
2
f (2)

+ O(h̄2). (B.9)

Substituting these equations into (B.4) we obtain, after some simplifications, the desired result,
equation (3.27), with

R(x0) = f (2)g(2) − f (3)g(1)

2f (2)2g(0)
+

5(f (3))2 − 3f (2)f (4)

24(f (2))3
. (B.10)

Appendix C. Cancellation of first-order terms in S + I

Our goal here is to show that the quantity (S + I) appearing in the phase of the propagator,
equation (2.72), can be written as SW + O(h̄2), where SW is the action computed with the
classical Hamiltonian HC, which we assume to be the same as the Weyl symbol HW. In order
to do that we must relate H to HW and write the classical trajectories governed by H in terms
of those governed by HW.

The relation between HW and H ≡ H1 is given by the second of equations (3.23).
Expanding the exponential operator we obtain

HW(u, v) = H(u, v)− 1

2

∂2H
∂u∂v

(u, v) + · · · . (C.1)
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The second term on the right is what we have called ε(u, v) in section 6 (see equation (6.30)).
We assume that HW does not depend explicitly on h̄, and that H may be written as a power
series in h̄, starting at h̄0. The same holds for ε(u, v), with the series starting at h̄1. Since the
next term in the expansion (C.1) is of order h̄2, equation (C.1) can be rewritten as

HW(u, v) = H(u, v)− ε(u, v) + O(h̄2). (C.2)

The inverse equation, where H is written in terms of HW, is

H(u, v) = HW(u, v) + εW(u, v) + O(h̄2) (C.3)

where εW(u, v) is defined by equation (6.30) with HW replacing H.
Let u = u(v′′, u′, t ′) and v = v(v′′, u′, t ′) be the solutions of Hamilton’s equations (2.36)

with boundary conditions u(v′′, u′, 0) = u′, v(v′′, u′, t) = v′′. Let also u0 = u0(v
′′, u′, t ′) and

v0 = v0(v
′′, u′, t ′) be the solutions of the same Hamilton equations but with H replaced

by the classical Hamiltonian HW and the same boundary conditions, u0(v
′′, u′, 0) = u′,

v0(v
′′, u′, t) = v′′. Since the difference between the functions H and HW is of order h̄ we

write
u(v′′, u′, t ′) = u0(v

′′, u′, t ′) + h̄u1(v
′′, u′, t ′) + O(h̄2)

v(v′′, u′, t ′) = v0(v
′′, u′, t ′) + h̄v1(v

′′, u′, t ′) + O(h̄2).
(C.4)

Notice that t is the total propagation time, whereas t ′ is used for intermediate instants,
0 < t ′ < t . Due to the boundary conditions we have

u1(v
′′, u′, 0) = 0

v1(v
′′, u′, t) = 0.

(C.5)

For the sake of clarity we rewrite formula (2.54) for the action:

S(v′′, u′, t) :=
∫ t

0
dt ′
[

ih̄

2
(u̇v − v̇u)− H(u, v, t ′)

]
− ih̄

2
(u′′v′′ + u′v′). (C.6)

We shall now expand the various terms in S(v′′, u′, t) in powers of h̄. We start with H(u, v)
calculated along its own trajectory:

H(u, v) = HW(u0 + h̄u1, v0 + h̄v1) + εW(u0, v0) + O(h̄2)

= HW(u0, v0) +
∂HW

∂u
(u0, v0)h̄u1 +

∂HW

∂v
(u0, v0)h̄v1 + ε(u0, v0) + O(h̄2)

= HW(u0, v0)− ih̄2v̇0u1 + ih̄2u̇0v1 + ε(u0, v0) + O(h̄2) (C.7)

where the dot means d/dt ′. Using equations (C.4) we also find

ih̄

2
(u̇v − v̇u) = ih̄

2
(u̇0v0 − v̇0u0) +

ih̄2

2
(u̇1v0 + u̇0v1 − v̇0u1 − v̇1u0) + O(h̄2)

= ih̄

2
(u̇0v0 − v̇0u0)− ih̄2(v̇0u1 − u̇0v1) +

ih̄2

2

d

dt ′
(v0u1 − v1u0) + O(h̄2). (C.8)

Finally, using equations (C.5), we have
ih̄

2
(u′′v′′ + u′v′) = ih̄

2
(u′′

0 + h̄u′′
1)v

′′ +
ih̄

2
u′(v′

0 + h̄v′
1) + O(h̄2)

= ih̄

2
(u′′

0v
′′ + u′v′

0) +
ih̄2

2
(u′′

1v
′′ + u′v′

1) + O(h̄2). (C.9)

Substituting equations (C.7)–(C.9) in (C.6) we see that the second and third terms in
equation (C.7) cancel the terms in the second parenthesis of (C.8). We get

S(v′′, u′, t) = SW(v
′′, u′, t) +

∫ t

0
dt ′
[

ih̄2

2

d

dt ′
(v0u1 − v1u0)− ε(u, v)

]

− ih̄2

2
(u′′

1v
′′ + u′v′

1) + O(h̄2). (C.10)
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Using equation (C.5) once again, we cancel the first two terms on the second line against those
under the total derivative sign. Recalling the definition (2.65) of I, we finally get

S(v′′, u′, t) + I(v′′, u′, t) = SW(v
′′, u′, t) + O(h̄2). (C.11)
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[Sep96] Sepúlveda M A and Grossmann F 1996 Time-dependent semiclassical mechanics Adv. Chem. Phys. 96

191
[Sun97] Sun X and Miller W H 1997 Mixed semiclassical–classical approaches to the dynamics of complex

molecular systems J. Chem. Phys. 106 916
[Sun00] Sun S X 2000 Semiclassical approximations to real-time quantum-mechanical effects in correlation

functions of complex molecular systems J. Chem. Phys. 112 8241
[Tho00] Thoss M, Miller W H and Stock G 2000 Semiclassical description of nonadiabatic quantum dynamics:

application to the S-1-S-2 conical intersection in pyrazine J. Chem. Phys. 112 10282
[Van28] Van Vleck J H 1928 The correspondence principle in the statistical interpretation of quantum mechanics

Proc. Natl Acad. Sci. USA 14 178
[Vor89] Voros A 1989 Wentzel–Kramers–Brillouin method in the Bargmann representation Phys. Rev. A 40 6814
[Vor77] Voros A 1977 Asymptotic h̄-expansions of stationary quantum states Ann. Inst. H. Poincaré A 26 343
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